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1. (a) Recall that the distance between two points p, q is given by

dpp, qq “ inf tLpγq : γ is a path connecting p, qu

This exercise can be thought of being an alternative proof of Hopf-Rinov theorem.
Due to geodesical completeness, Brppq is compact for every r P R` and p PM as
Brppq is a closed set contained in expppBr`εq which is compact.

Now given p, q P M , then let d :“ dpp, qq ă 8 and as Bdppq is compact, there
is an ε ą 0 such that Bεpxq is a geodesically convex neighborhood (i.e. any two
points in this ball are connected by a unique geodesic and the dependence on the
endpoints is smooth. Tho see that this exists simply consider id ˆ exp : TM Ñ

M ˆM : pp, vq ÞÑ pp, expppvqq and apply Inverse function theorem.) Now take

R “ d ` ε. For any 1
n ă

ε
3 , we get by definition of the infimum, that there is a

curve connecting γ : r0, 1s Ñ M connecting p and q and such that lpγq ď d ` 1
n .

This curve has to lie in BRppq for length reasons. Thus choose increasing times
tni for i P t1, . . . ,Knu such that

dpγptni q, γpt
n
i`1qq ă

ε

3
, tn0 “ 0, tnKn “ 1 and Kn “

S

d` 1
n

ε
3

W

´ 1

Now we can connect the points qi :“ γptiq with qi`1 :“ γpti`1q with the unique
geodesic νni in the geodesic neighborhood Bεpqiq. These geodesic segments cannot
leave BRppq by triangular inequality. Now the concatenation µn of all of these
Kn geodesics νni is a piecewise smooth geodesic and its length is ď Kn

ε
3 ď d` 1

n .
Now the sequence tµnuněN is a minimizing sequence of piecewise smooth geodesics
with Kn ď KN breaks.

(b) With the same notation as in aq, we fix some more points on the curve µn so that
every curve has exactly KN breaks. As qn1 P BRppq lie in a compact set, there

is a convergent subsequence q
pn,1q
1 converging to q81 . Now repeat this process, to

extract successively subsequences q
pn,iq
i such that q

pn,iq
j Ñ q8j for j ď i. Finally,

you end up with convergent sequences q
pn,Knq
i to q8i . We have dpq8i , q

8
i`1q ď

ε
3

and so we can get the concatenated piecewise smooth geodesic µ8 made up of
the geodesics ν8i as before. As the dependence on the endpoints is smooth in the

geodesically convex neighborhood, the curves ν
pn,Knq
i converge uniformly together
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with all their derivatives to ν8i . Therefore, the length of µ8 has to converge to d
by construction as length only depends on the curve and its first derivative.

(c) If γ is length minimizing, then for any x P γ we have that in Bεpxq the restriction
of γ is the unique length minimizing geodesic connecting different point of γ in
Bεpxq. It follows that γ is smooth in Bεpxq.

2. Since M is complete, then the exponential map

expp : TpM ÑM

is surjective. Then M “
Ť

nPNBnppq. Since M is not compact, there must be a
sequence pn in M such that dpp, pnq “ n and pn is a a point on the boundary of Bnppq.
Let γn be a lenght minimizing geodesic connecting p with pn. It can be written as

γn :“ expppnXnq

for some unit tangent vector Xn. Since the unit ball in TpM is compact, the sequence
Xn has a convergent subsequence

 

Xnj

(

j
. Let X be the limit of this subsequence. We

show that γptq :“ exppptXq is a ray. Assume that there exist an t0 such that

dpp, γpt0qq “ t0 ´ ε

for some ε ą 0. We need the following two facts:

(a) Since the exponential map is continuous in both the variables, there exists a δ ą 0
such that

d
`

expppt0Xq, expppt0Y q
˘

ă ε

for any Y with ||X ´ Y || ă δ.

(b) Since X is a limit of a convergent subsequence there exists a l ą t0 such that

||X ´Xl|| ă δ

Now by triangular inequality

d pp, expplXlqq ď d pp, γpt0qq ` d pγpt0q, expplXlqq

ď d pp, γpt0qq ` d pγpt0q, exppt0Xlqq ` d pexppt0Xlq, expplXlqq

ă t0 ´ ε` ε` pl ´ t0q

where the last term comes from the fact that expptXlq is the length minimizing geodesic
connecting p with pl. We conclude

d pp, expplXlqq ă l

which is a contradiction.

3. (a) We first prove a general fact: Let M be a Riemannian manifold equipped with a
Killing field. Assume that Xppq “ 0 at some p. Then X is tangent to the geodesic
spheres around p for small radii.
Let r ą 0 small enough such that exppp´q : Brp0q Ă TpM Ñ M is a diffeomor-

phism onto its image. Now let q P expp pBrppqq, let φt be the flow of X. Since

Xppq “ 0 we have φtppq “ p for all t P R. Then from

dpp, qq “ dpφtppq, φtpqqq “ dpp, φtpqqq
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it follow that the integral line trough q P Brppq lies on the geodesic sphere of
radius s where 0 ă s :“ dpp, qq ă r.

Assume from now on that M is a two dimensional Riemannian manifold. We want
to prove that zeroes of non-trivial Killing fields are isolated in two dimensions.
Indeed, consider the set H “ tφt : M Ñ M : t P Ru of isometries ( we already
proved in ExSheet 8, that Killing fields have complete flows.) and its fixed point
set N :“ FixpHq “ tp P M : Xppq “ 0u which we proved to be a manifold
in ExSheet 7 with tangent space at p P N equal to the space of vectors fixed
by dφtppq for all t P R. But dφtppq P SOp2q, which means that either there is
a two dimensional space of fixed vectors (dφtppq “ id) or TpN “ t0u. As X is
non-trivial, we can’t have the first option according to ExSheet 7 and so N is
0-dimensional, i.e. consists of isolated points.

From ExSheet 7, we already know that the length xX,Xy of a Killing field X is
constant along each integral line. The geodesic normal coordinates around p are
given by a map

expp : Dr ÑM

where Dr is the open disk in C “ R2 of radius r. Then the vector fields on Dr

that are tangent to all the circles Cs, s ă r and with constant length are of the
form

Xpzq “ ap|z|qiz.

for some smooth function ap| ¨ |q : r0, r2s Ñ R.
Note that the integral curves of X with respect to these coordinates are the circles
γs : S1 Ñ C

γsptq :“ seiapsqt

for any 0 ă s ă r.

(b) Let r sufficently small such that expp : Dr Ñ M is a diffeomorphism. We show
that expp pBDrq is the set BBrppq of points with distance r from p.

Since M is complete we have that expppDrq is compact and therefore closed as

Br`εppq is compact. Therefore as Brppq is the smallest closed set containing Brppq
and expppDrq “ Brppq, we have BBrppq Ă expppBDrq.
For the converse, for v P BDr take a sequence vi P Dr converging to v and
so expppviq P Brppq converges to expppvq by continuity, therefore expppBDrq Ă

BBrppq.

Note also that the proof of a) carry over this situation, and X is tangent to the
expp pBDrq.
The integral curve at p P expp pBDrq is given by

expp pγrptqq

This follows by writing

expp

´

lim
sÑr

γsptq
¯
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and from smoothness of expp : TpM ÑM . Consider the map expp |BDr : BDr Ñ

M . The above discussion showed that the map γ :“ expp |BDr ˝ γr : S1 Ñ M is
the integral curve of X of some q P BBrppq. we have two cases

(i) If Xpqq “ 0, it follows that γ map S1 to a point. In particular since
γr : S1 Ñ BDr is an embedding, we conclude that expp |BDr : BDr Ñ M
maps all the points to one point.

(ii) If Xpqq ‰ 0 we show that γ is an embedding. Put γp0q “: q. Since S1 is
compact it is suffices to show that γ is an injective immersion.

For the immersion, we have 9γ “ X ˝ γ ‰ 0 since X has constant non zero
length along the integral curve.

Next for the injectivity, we crucially have to use the assumption that M is
orientable. To see how it might fail, look for example at the lower hemi-
sphere and identify points on the equator with their antipodal points.
First, as γ is an integral curve and an immersion, it is locally injective and
at crossings γpt1q “ γpt2q, the tangent vectors agree as

9γpt1q “ Xpγpt1qq “ Xpγpt2qq “ 9γpt2q.

Furthermore, as γp0q “ γp2πq, there is a root of unity t0 :“ 2π
n such that γ

is t0 periodic. For γ to be injective, we need to show that n “ 1.
Now as X|BBr ‰ 0, there is ε ą 0 such that on U “ Br`εzBr´ε, X is non
zero. As M is 2 dimensional and orientable, there is a unique unit vector
field Y orthogonal to X such that pY,Xq forms a positive basis. Up to
changing to the opposite orientation, in our geodesic coordinates Y pzq is a
radially outgoing vector field and so the integral curves in UXBrppq is given
by ν : pr´ε, rq ÑM : t ÞÑ exppptvq for v P TpM a unit vector. By definition,

the geodesics γ1ptq “ expppte1q and γ2ptq “ expppte
t0ie1q intersect at q. We

have

9γ1prq “ Y pqq “ 9γ2prq

and so by uniqueness of geodesics we must have n “ 1.

Now we still need to see why there is s ą r such that expp |Ds is still a dif-
feomorphism. As tXpqq, Y pqqu P d expppqqTpM for q P BBrppq (To see this,
calculate the differential using curves.), and so d expp is an isomorphism on

Dr. By compactness, there is ε ą 0 such that d expp is an isomorphism on
Dr`ε. So we are only left with proving injectivity.

Now assume there is no 0 ă δ ă ε such that expp |Dr`δ
is injective. This

means we find δk Ñ 0, vk1 ‰ vk2 P TpM unit vectors and 0 ă sk1, s
k
2 ă δk such

that

qk :“ exppppr ` s
k
1qv

k
1 q “ exppppr ` s

k
1qv

k
2 .
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As the unit circle is compact, there is a subsequence such that vk1 Ñ v1 and
vk2 Ñ v2. We have by continuity,

q :“ exppprv1q “ exppprv2q

and by injectivity established above, we have v1 “ v2. But this leads to a
contradiction as

pr ` sk1qv
k
1 Ñ v1 “ v2 Ð pr ` sk2qv

k
2

and by Inverse function theorem, expp is a diffeomorphism in a neighbor-
hood of q, so in particular injective on this neighborhood.

(c) (i) Assume that X has its only zero in p PM . Then look at the set

S “ tr P R` : expp : Dr ÑM is a diffeomorphism u.

This set is non-empty, and by b) both open and closed, so S “ R` and
expp : TpM ÑM is a diffeomorphism from TpM – R2 and M .

(ii) It remains to treat the case where there is a second point q P M with
Xpqq “ 0, i.e when expp |BDr : BDr ÑM map all the points into one point.
Then if we identify BDr with a point by an equivalence relation we get that
expp induces an embedding from S2 into M . Since S2 is complete from the
previous exercise sheet we know that it cannot be embedded isometrically
in any 2-manifold except S2.

4. (a) Consider a surface of revolution M (see exercise sheet 6, exercise 2) turned along
the x axis. Let γ be a latitude circle. Then let C be the tangent cone on M at γ
(see my picture;). Recall that two connections on M and C are obtained from the
orthogonal projection of the Levi-Civita connection D of R3 (see exercise sheet 4
exercise 3), but in this case the two ortogonal projections

π1 : TpR3 Ñ TpM, π2 : TpR3 Ñ TpC,

agrees if p P γ. This show that the holonomy around γ on M is the same as
the holonomy around γ on C. In particular the holonomy on the cone can be
computed easily: cut the cone from the center along a line and rolled flat (see
picture 1). It turns out that the holonomy is equal to the angle obtained.

(b) It follows from above. See the picture 2.
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