Solution of Exercise Sheet 9

1. (a) Recall that the distance between two points p, q is given by

$$
d(p, q)=\inf \{L(\gamma): \gamma \text { is a path connecting } p, q\}
$$

This exercise can be thought of being an alternative proof of Hopf-Rinov theorem. Due to geodesical completeness, $\bar{B}_{r}(p)$ is compact for every $r \in \mathbb{R}_{+}$and $p \in M$ as $\bar{B}_{r}(p)$ is a closed set contained in $\exp _{p}\left(\bar{B}_{r+\epsilon}\right)$ which is compact.
Now given $p, q \in M$, then let $d:=d(p, q)<\infty$ and as $\bar{B}_{d}(p)$ is compact, there is an $\epsilon>0$ such that $B_{\epsilon}(x)$ is a geodesically convex neighborhood (i.e. any two points in this ball are connected by a unique geodesic and the dependence on the endpoints is smooth. Tho see that this exists simply consider $i d \times \exp : T M \rightarrow$ $M \times M:(p, v) \mapsto\left(p, \exp _{p}(v)\right)$ and apply Inverse function theorem.) Now take $R=d+\epsilon$. For any $\frac{1}{n}<\frac{\epsilon}{3}$, we get by definition of the infimum, that there is a curve connecting $\gamma:[0,1] \rightarrow M$ connecting p and q and such that $l(\gamma) \leqslant d+\frac{1}{n}$. This curve has to lie in $B_{R}(p)$ for length reasons. Thus choose increasing times t_{i}^{n} for $i \in\left\{1, \ldots, K_{n}\right\}$ such that

$$
d\left(\gamma\left(t_{i}^{n}\right), \gamma\left(t_{i+1}^{n}\right)\right)<\frac{\epsilon}{3}, \quad t_{0}^{n}=0, \quad t_{K_{n}}^{n}=1 \quad \text { and } K_{n}=\left\lceil\frac{d+\frac{1}{n}}{\frac{\epsilon}{3}}\right\rceil-1
$$

Now we can connect the points $q_{i}:=\gamma\left(t_{i}\right)$ with $q_{i+1}:=\gamma\left(t_{i+1}\right)$ with the unique geodesic ν_{i}^{n} in the geodesic neighborhood $B_{\epsilon}\left(q_{i}\right)$. These geodesic segments cannot leave $B_{R}(p)$ by triangular inequality. Now the concatenation μ^{n} of all of these K_{n} geodesics ν_{i}^{n} is a piecewise smooth geodesic and its length is $\leqslant K_{n} \frac{\epsilon}{3} \leqslant d+\frac{1}{n}$. Now the sequence $\left\{\mu^{n}\right\}_{n \geqslant N}$ is a minimizing sequence of piecewise smooth geodesics with $K_{n} \leqslant K_{N}$ breaks.
(b) With the same notation as in a), we fix some more points on the curve μ_{n} so that every curve has exactly K_{N} breaks. As $q_{1}^{n} \in \bar{B}_{R}(p)$ lie in a compact set, there is a convergent subsequence $q_{1}^{(n, 1)}$ converging to q_{1}^{∞}. Now repeat this process, to extract successively subsequences $q_{i}^{(n, i)}$ such that $q_{j}^{(n, i)} \rightarrow q_{j}^{\infty}$ for $j \leqslant i$. Finally, you end up with convergent sequences $q_{i}^{\left(n, K_{n}\right)}$ to q_{i}^{∞}. We have $d\left(q_{i}^{\infty}, q_{i+1}^{\infty}\right) \leqslant \frac{\epsilon}{3}$ and so we can get the concatenated piecewise smooth geodesic μ^{∞} made up of the geodesics ν_{i}^{∞} as before. As the dependence on the endpoints is smooth in the geodesically convex neighborhood, the curves $\nu_{i}^{\left(n, K_{n}\right)}$ converge uniformly together
with all their derivatives to ν_{i}^{∞}. Therefore, the length of μ^{∞} has to converge to d by construction as length only depends on the curve and its first derivative.
(c) If γ is length minimizing, then for any $x \in \gamma$ we have that in $B_{\epsilon}(x)$ the restriction of γ is the unique length minimizing geodesic connecting different point of γ in $B_{\epsilon}(x)$. It follows that γ is smooth in $B_{\epsilon}(x)$.
2. Since M is complete, then the exponential map

$$
\exp _{p}: T_{p} M \rightarrow M
$$

is surjective. Then $M=\bigcup_{n \in \mathbb{N}} B_{n}(p)$. Since M is not compact, there must be a sequence p_{n} in M such that $d\left(p, p_{n}\right)=n$ and p_{n} is a a point on the boundary of $B_{n}(p)$. Let γ_{n} be a lenght minimizing geodesic connecting p with p_{n}. It can be written as

$$
\gamma_{n}:=\exp _{p}\left(n X_{n}\right)
$$

for some unit tangent vector X_{n}. Since the unit ball in $T_{p} M$ is compact, the sequence X_{n} has a convergent subsequence $\left\{X_{n_{j}}\right\}_{j}$. Let X be the limit of this subsequence. We show that $\gamma(t):=\exp _{p}(t X)$ is a ray. Assume that there exist an t_{0} such that

$$
d\left(p, \gamma\left(t_{0}\right)\right)=t_{0}-\epsilon
$$

for some $\epsilon>0$. We need the following two facts:
(a) Since the exponential map is continuous in both the variables, there exists a $\delta>0$ such that

$$
d\left(\exp _{p}\left(t_{0} X\right), \exp _{p}\left(t_{0} Y\right)\right)<\epsilon
$$

for any Y with $\|X-Y\|<\delta$.
(b) Since X is a limit of a convergent subsequence there exists a $l>t_{0}$ such that

$$
\left\|X-X_{l}\right\|<\delta
$$

Now by triangular inequality

$$
\begin{aligned}
d\left(p, \exp \left(l X_{l}\right)\right) & \leqslant d\left(p, \gamma\left(t_{0}\right)\right)+d\left(\gamma\left(t_{0}\right), \exp \left(l X_{l}\right)\right) \\
& \leqslant d\left(p, \gamma\left(t_{0}\right)\right)+d\left(\gamma\left(t_{0}\right), \exp \left(t_{0} X_{l}\right)\right)+d\left(\exp \left(t_{0} X_{l}\right), \exp \left(l X_{l}\right)\right) \\
& <t_{0}-\epsilon+\epsilon+\left(l-t_{0}\right)
\end{aligned}
$$

where the last term comes from the fact that $\exp \left(t X_{l}\right)$ is the length minimizing geodesic connecting p with p_{l}. We conclude

$$
d\left(p, \exp \left(l X_{l}\right)\right)<l
$$

which is a contradiction.
3. (a) We first prove a general fact: Let M be a Riemannian manifold equipped with a Killing field. Assume that $X(p)=0$ at some p. Then X is tangent to the geodesic spheres around p for small radii.
Let $r>0$ small enough such that $\exp _{p}(-): B_{r}(0) \subset T_{p} M \rightarrow M$ is a diffeomorphism onto its image. Now let $q \in \exp _{p}\left(B_{r}(p)\right)$, let ϕ^{t} be the flow of X. Since $X(p)=0$ we have $\phi^{t}(p)=p$ for all $t \in \mathbb{R}$. Then from

$$
d(p, q)=d\left(\phi^{t}(p), \underset{2}{\left.\phi^{t}(q)\right)}=d\left(p, \phi^{t}(q)\right)\right.
$$

it follow that the integral line trough $q \in B_{r}(p)$ lies on the geodesic sphere of radius s where $0<s:=d(p, q)<r$.

Assume from now on that M is a two dimensional Riemannian manifold. We want to prove that zeroes of non-trivial Killing fields are isolated in two dimensions. Indeed, consider the set $H=\left\{\phi^{t}: M \rightarrow M: t \in \mathbb{R}\right\}$ of isometries (we already proved in ExSheet 8, that Killing fields have complete flows.) and its fixed point set $N:=\operatorname{Fix}(H)=\{p \in M: X(p)=0\}$ which we proved to be a manifold in ExSheet 7 with tangent space at $p \in N$ equal to the space of vectors fixed by $d \phi_{t}(p)$ for all $t \in \mathbb{R}$. But $d \phi_{t}(p) \in S O(2)$, which means that either there is a two dimensional space of fixed vectors $\left(d \phi_{t}(p)=i d\right)$ or $T_{p} N=\{0\}$. As X is non-trivial, we can't have the first option according to ExSheet 7 and so N is 0 -dimensional, i.e. consists of isolated points.

From ExSheet 7, we already know that the length $\langle X, X\rangle$ of a Killing field X is constant along each integral line. The geodesic normal coordinates around p are given by a map

$$
\exp _{p}: D_{r} \rightarrow M
$$

where D_{r} is the open disk in $\mathbb{C}=\mathbb{R}^{2}$ of radius r. Then the vector fields on D_{r} that are tangent to all the circles $C_{s}, s<r$ and with constant length are of the form

$$
X(z)=a(|z|) i z .
$$

for some smooth function $a(|\cdot|):\left[0, r^{2}\right] \rightarrow \mathbb{R}$.
Note that the integral curves of X with respect to these coordinates are the circles $\gamma_{s}: S^{1} \rightarrow \mathbb{C}$

$$
\gamma_{s}(t):=s e^{i a(s) t}
$$

for any $0<s<r$.
(b) Let r sufficently small such that $\exp _{p}: D_{r} \rightarrow M$ is a diffeomorphism. We show that $\exp _{p}\left(\partial D_{r}\right)$ is the set $\partial B_{r}(p)$ of points with distance r from p.
Since M is complete we have that $\exp _{p}\left(\bar{D}_{r}\right)$ is compact and therefore closed as $\bar{B}_{r+\epsilon}(p)$ is compact. Therefore as $\bar{B}_{r}(p)$ is the smallest closed set containing $B_{r}(p)$ and $\exp _{p}\left(D_{r}\right)=B_{r}(p)$, we have $\partial B_{r}(p) \subset \exp _{p}\left(\partial D_{r}\right)$.
For the converse, for $v \in \partial D_{r}$ take a sequence $v_{i} \in D_{r}$ converging to v and so $\exp _{p}\left(v_{i}\right) \in B_{r}(p)$ converges to $\exp _{p}(v)$ by continuity, therefore $\exp _{p}\left(\partial D_{r}\right) \subset$ $\partial B_{r}(p)$.

Note also that the proof of a) carry over this situation, and X is tangent to the $\exp _{p}\left(\partial D_{r}\right)$.
The integral curve at $p \in \exp _{p}\left(\partial D_{r}\right)$ is given by

$$
\exp _{p}\left(\gamma_{r}(t)\right)
$$

This follows by writing

$$
\exp _{p}\left(\lim _{s \rightarrow r} \gamma_{s}(t)\right)
$$

and from smoothness of $\exp _{p}: T_{p} M \rightarrow M$. Consider the map $\left.\exp _{p}\right|_{\partial D_{r}}: \partial D_{r} \rightarrow$ M. The above discussion showed that the map $\gamma:=\left.\exp _{p}\right|_{\partial D_{r}} \circ \gamma_{r}: S^{1} \rightarrow M$ is the integral curve of X of some $q \in \partial B_{r}(p)$. we have two cases
(i) If $X(q)=0$, it follows that γ map S^{1} to a point. In particular since $\gamma_{r}: S^{1} \rightarrow \partial D_{r}$ is an embedding, we conclude that $\left.\exp _{p}\right|_{\partial D_{r}}: \partial D_{r} \rightarrow M$ maps all the points to one point.
(ii) If $X(q) \neq 0$ we show that γ is an embedding. Put $\gamma(0)=: q$. Since S^{1} is compact it is suffices to show that γ is an injective immersion.

For the immersion, we have $\dot{\gamma}=X \circ \gamma \neq 0$ since X has constant non zero length along the integral curve.

Next for the injectivity, we crucially have to use the assumption that M is orientable. To see how it might fail, look for example at the lower hemisphere and identify points on the equator with their antipodal points.
First, as γ is an integral curve and an immersion, it is locally injective and at crossings $\gamma\left(t_{1}\right)=\gamma\left(t_{2}\right)$, the tangent vectors agree as

$$
\dot{\gamma}\left(t_{1}\right)=X\left(\gamma\left(t_{1}\right)\right)=X\left(\gamma\left(t_{2}\right)\right)=\dot{\gamma}\left(t_{2}\right)
$$

Furthermore, as $\gamma(0)=\gamma(2 \pi)$, there is a root of unity $t_{0}:=\frac{2 \pi}{n}$ such that γ is t_{0} periodic. For γ to be injective, we need to show that $n=1$.
Now as $\left.X\right|_{\partial B_{r}} \neq 0$, there is $\epsilon>0$ such that on $U=B_{r+\epsilon} \backslash \bar{B}_{r-\epsilon}, X$ is non zero. As M is 2 dimensional and orientable, there is a unique unit vector field Y orthogonal to X such that (Y, X) forms a positive basis. Up to changing to the opposite orientation, in our geodesic coordinates $Y(z)$ is a radially outgoing vector field and so the integral curves in $U \cap B_{r}(p)$ is given by $\nu:(r-\epsilon, r) \rightarrow M: t \mapsto \exp _{p}(t v)$ for $v \in T_{p} M$ a unit vector. By definition, the geodesics $\gamma_{1}(t)=\exp _{p}\left(t e_{1}\right)$ and $\gamma_{2}(t)=\exp _{p}\left(t e^{t_{0} i} e_{1}\right)$ intersect at q. We have

$$
\dot{\gamma}_{1}(r)=Y(q)=\dot{\gamma}_{2}(r)
$$

and so by uniqueness of geodesics we must have $n=1$.

Now we still need to see why there is $s>r$ such that $\left.\exp _{p}\right|_{D_{s}}$ is still a diffeomorphism. As $\{X(q), Y(q)\} \in d \exp _{p}(q) T_{p} M$ for $q \in \partial B_{r}(p)$ (To see this, calculate the differential using curves.), and so $d \exp _{p}$ is an isomorphism on \bar{D}_{r}. By compactness, there is $\epsilon>0$ such that $d \exp _{p}$ is an isomorphism on $D_{r+\epsilon}$. So we are only left with proving injectivity.

Now assume there is no $0<\delta<\epsilon$ such that $\left.\exp _{p}\right|_{D_{r+\delta}}$ is injective. This means we find $\delta_{k} \rightarrow 0, v_{1}^{k} \neq v_{2}^{k} \in T_{p} M$ unit vectors and $0<s_{1}^{k}, s_{2}^{k}<\delta_{k}$ such that

$$
q_{k}:=\exp _{p}\left(\left(r+s_{1}^{k}\right) v_{1}^{k}\right)=\exp _{p}\left(\left(r+s_{1}^{k}\right) v_{2}^{k} .\right.
$$

As the unit circle is compact, there is a subsequence such that $v_{1}^{k} \rightarrow v_{1}$ and $v_{2}^{k} \rightarrow v_{2}$. We have by continuity,

$$
q:=\exp _{p}\left(r v_{1}\right)=\exp _{p}\left(r v_{2}\right)
$$

and by injectivity established above, we have $v_{1}=v_{2}$. But this leads to a contradiction as

$$
\left(r+s_{1}^{k}\right) v_{1}^{k} \rightarrow v_{1}=v_{2} \leftarrow\left(r+s_{2}^{k}\right) v_{2}^{k}
$$

and by Inverse function theorem, $\exp _{p}$ is a diffeomorphism in a neighborhood of q, so in particular injective on this neighborhood.
(c) (i) Assume that X has its only zero in $p \in M$. Then look at the set

$$
S=\left\{r \in \mathbb{R}_{+}: \exp _{p}: D_{r} \rightarrow M \text { is a diffeomorphism }\right\} .
$$

This set is non-empty, and by b) both open and closed, so $S=\mathbb{R}_{+}$and $\exp _{p}: T_{p} M \rightarrow M$ is a diffeomorphism from $T_{p} M \cong \mathbb{R}^{2}$ and M.
(ii) It remains to treat the case where there is a second point $q \in M$ with $X(q)=0$, i.e when $\left.\exp _{p}\right|_{\partial D_{r}}: \partial D_{r} \rightarrow M$ map all the points into one point. Then if we identify ∂D_{r} with a point by an equivalence relation we get that $\exp _{p}$ induces an embedding from S^{2} into M. Since S^{2} is complete from the previous exercise sheet we know that it cannot be embedded isometrically in any 2 -manifold except S^{2}.
4. (a) Consider a surface of revolution M (see exercise sheet 6 , exercise 2) turned along the x axis. Let γ be a latitude circle. Then let C be the tangent cone on M at γ (see my picture;). Recall that two connections on M and C are obtained from the orthogonal projection of the Levi-Civita connection D of \mathbb{R}^{3} (see exercise sheet 4 exercise 3), but in this case the two ortogonal projections

$$
\pi_{1}: T_{p} \mathbb{R}^{3} \rightarrow T_{p} M, \quad \pi_{2}: T_{p} \mathbb{R}^{3} \rightarrow T_{p} C
$$

agrees if $p \in \gamma$. This show that the holonomy around γ on M is the same as the holonomy around γ on C. In particular the holonomy on the cone can be computed easily: cut the cone from the center along a line and rolled flat (see picture 1). It turns out that the holonomy is equal to the angle obtained.
(b) It follows from above. See the picture 2.

