D-MATH, FS 2015

Supplementary Exercises

- 1. (a) Let \mathbb{B}^2 be the Poincare disk model. Show that the diameter $\gamma(t) := t$ minimize the distance between any two points on x, y and is there fore a *geodesic*.
 - (b) Parametrize γ by arclenght.
- **2.** Let E be a vector bundle over a manifold M.
 - (a) Let $\gamma:[0,1]\to M$ be a colosed curve. Define what it means for γ to be orientation persevering, (resp. orientation-reversing) for E.
 - (b) Show that the property of being orientation-persevering (resp. orientation-reversing for E) is invariant under the homotopy class of γ .
 - (c) Define

$$w_1^E: \pi_1(M,p) \to \mathbb{Z}_2$$

via

$$w_1^E([\gamma]) := \begin{cases} 0 & \text{if } \gamma \text{ is orientation-persevering,} \\ 1 & \text{otherwise .} \end{cases}$$

Observe that w_1^E is a group homomorphism.

- (d) Show that E is orientable if and only if $w_1^E \equiv 0$. w_1^E is called the first Stiefel class of E.
- **3.** Define the oriented 2-plane bundle E_k over S^2 by gluing $B_1 \times \mathbb{R}^2$ to $B_1 \times \mathbb{R}^2$ via the map

$$\phi_k: \begin{array}{ccc} \partial B_1 \times \mathbb{R}^2 & \to & \partial B_1 \times \mathbb{R}^2 \\ & (e^{i\theta}, (x, y)) & \mapsto & (e^{-i\theta}, R_{-k\theta}(x, y)) \end{array}$$

where $R_{-k\theta}$ is rotation by $-k\theta$, and endowing the result with the obvious orientation.

- (a) Show that any \mathbb{R}^2 bundle over S^2 is isomorphic to E_k for some k.
- (b) Prove that E_k and E_l are isomorphic as oriented 2-plane bundles only if k = l.

Hint: you may use the theorem that any bundle over a contractible space is trivial.

- **4.** Let (S^2, g) be the standard sphere
 - (a) Compute g in polar coordinate.
 - (b) Compute the Christoffel symbols in polar coordinates.

- (c) Prove that the lines of longitude and the equator are geodesic via b).
- **5.** This exercise is useful for Exercise 1 of Exercise Sheet 7. Let G be a Lie group, $X \in T_eG$. Denote with X^L the left-invariant extension of X and with X^R the right invariant extension of X. Prove
 - (a) $\phi_t^{X^L}(e) = \phi_t^{X^R}(e)$ for $t \in \mathbb{R}$, where ϕ^W is the flow of W.
 - (b) Let $\exp(tX):=\phi_1^{X^L}(e)=\phi_1^{X^R}(e)$. Then $\exp\left((-)X\right):\mathbb{R}\to G$ is a group homomorphism called 1-parameter subgroup.
 - (c) $\phi_t^{X^R} = L_{\exp(tX)}$, i.e. the left multiplication by $\exp(tX)$ is the flow of X^R .
- **6.** Let $B_{\epsilon}(p)$ be a geodesic ball in a Riemannian manifold, d(q) := dist(p,q)
 - (a) Observe that $d^2: B_{\epsilon}(p) \to \mathbb{R}$ is smooth for ϵ small enough.
 - (b) Show that for a unit speed geodesic γ in $B_{\epsilon}(p)$, ϵ small enough,

$$\frac{d^2}{dt^2}d(\gamma(t))^2 = 2 + h_{\gamma(t)},$$

where $|h_{\gamma(t)}| \leq C d(\gamma(t))^2$ for some C independent of γ .