Exercise sheet 2

Exercise 2.1 Consider the following trinomial market: let (Ω, \mathcal{F}, P) be given by $\Omega=\left\{\omega_{u}, \omega_{m}, \omega_{d}\right\}, \mathcal{F}=2^{\Omega}$ and $P\left(\left\{\omega_{i}\right\}\right)=p_{i} \in(0,1)$ for $i \in$ $\{u, m, d\}$ and real numbers $u>m>d>0$. Also assume that $u>1+r>d$.
With this setup let the assets evolve as follows:

$$
\begin{array}{ll}
\pi^{0}=1, & \pi^{1}=1 \\
S^{0}=1+r, & S^{1}=Y
\end{array}
$$

where $Y\left(\omega_{i}\right)=i$ for $i \in\{u, m, d\}$.
Calculate the super-replication price of a call option with strike K as a function of K. That is, calculate $\Pi_{\text {sup }}\left(C^{\text {call }}\right)$ where $C^{\text {call }}=\left(S^{1}-K\right)^{+}$as a function of K.
Remark: This is the same market as in Exercise 1.2, but the definition of Y is changed slightly.

Exercise 2.2 We have previously considered binomial and trinomial markets. This can be generalized to any finite number of outcomes. For example, fix $n \in \mathbb{N}$ and let (Ω, \mathcal{F}, P) be given by $\Omega=\left\{\omega_{i}: i=1, \ldots, n\right\}, \mathcal{F}=2^{\Omega}$ and $P\left(\left\{\omega_{i}\right\}\right)=p_{i} \in(0,1)$ for $i=1, \ldots, n$. Define the market by

$$
\begin{array}{ll}
\pi^{0}=1, & \pi^{1}=1 \\
S^{0}=1+r, & S^{1}=Y
\end{array}
$$

where $Y\left(\omega_{i}\right)=y_{i}$ for some $y_{i} \in[0, \infty)$. As before, define X^{1} as the discounted asset price

$$
X^{1}=\frac{S^{1}}{1+r}
$$

Assume that

$$
\max _{i=1, \ldots, n} y_{i}>1+r>\min _{i=1, \ldots, n} y_{i}
$$

(i) Verify that

$$
M\left(X^{1}, P\right)=\left\{E_{Q}\left[\frac{S^{1}}{1+r}\right]: Q \approx P\right\}=\operatorname{ri} \Gamma\left(P \circ\left(X^{1}\right)^{-1}\right)
$$

where $\Gamma(\mu)=\operatorname{conv}(\operatorname{supp} \mu)$.
(ii) Show that $1 \in \operatorname{ri} \Gamma\left(P \circ\left(X^{1}\right)^{-1}\right)$ to conclude that the market is free of arbitrage.

Exercise 2.3 Consider the model studied in Exercise 1.3, i.e., a market defined by

$$
\begin{array}{ll}
\pi^{0}=1, & \pi^{1}=1, \\
S^{0}=e^{r}, & S^{1}=e^{Y},
\end{array}
$$

defined on some probability space (Ω, \mathcal{F}, P) with $\mathcal{F}=\sigma(Y)$ and Y is a standard normal random variable under P.
(i) Show that the EMM P^{*} from Exercise 1.3 is not unique by showing that the call option from the same exercise is not attainable.
(ii) Suppose now that S^{1} is not necessarily distributed as above, but instead has some other distribution. Assume further that the market is free of arbitrage. Show that the market is complete if and only if S^{1} is binomially distributed.

Exercise 2.4 We again consider the model from Exercise 1.3. If you want, you may assume that $\Omega=\mathbb{R}$.
Define

$$
\begin{aligned}
& \Pi^{b}\left(C^{\text {call }}\right):= \\
& \left\{E^{b}\left[\frac{C^{\text {call }}}{e^{r}}\right]: S^{1} \text { is binomially distributed under } P^{b}, E^{b}\left[\frac{S^{1}}{e^{r}}\right]=\pi^{1}\right\} .
\end{aligned}
$$

This is the set of arbitrage free prices under some measure for which S^{1} is binomially distributed.

The goal of this exercise is to show that

$$
\Pi^{b}\left(C^{\text {call }}\right) \subseteq\left[\Pi_{\mathrm{inf}}\left(C^{\text {call }}\right), \Pi_{\mathrm{sup}}\left(C^{\text {call }}\right)\right]
$$

(i) Construct a sequence of martingale measures absolutely continuous to P that converges weakly to a martingale measure under which S^{1} is binomially distributed.
(ii) Construct convex combinations of this sequence and P^{*} found in Exercise 1.3 to show the inclusion above.

Exercise 2.5 It is known that for any market which is free of arbitrage it holds that

$$
\left(\pi^{1}-\frac{K}{S^{0}}\right)^{+} \leq \Pi_{\mathrm{inf}}\left(C^{\text {call }}\right)
$$

and

$$
\Pi_{\text {sup }}\left(C^{\text {call }}\right) \leq \pi^{1} .
$$

Show that these inequalities are equalities for the market from Exercise 1.3.

