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Exercise sheet 4
Exercise 4.1 Instead of calculating derivative prices explicitly, it can some-
times be beneficial to simulate the market instead. The idea is to simulate a
large number of outcomes of the stock prices, then calculate the payoff in
each scenario, and finally find the average over all outcomes. This is actually
an approximation of the expected value, which we know gives the price, and
is called Monte Carlo simulation.
Employ Monte Carlo simulation to find the price of the market from Exercise
3.4. Note that the simulation will have a slow convergence rate so be prepared
to choose a large number of simulations.

Exercise 4.2 In this exercise we will see an example of why the finiteness
of our finite period model is crucial.
We are going to construct a so called doubling strategy. The idea is to
increase the size of bets whenever the asset loses value. This is done in such a
way that the value is positive if the stock appreciates, and in such a scenario
the process is stopped.
Consider the binomial model from Exercise 3.4 with a = b = 0.5 and r = 0.
Define the trading strategy as

ξt = 1
St−1

2t−11{t≤τ}

with τ = inf{t|Rt = b}.

(a) Run Monte Carlo simulations with increasingly many time steps to get
an idea of the value of such a portfolio. What did you find?

(b) Instead of calculating the value of the strategy, calculate/simulate the
biggest loss to see how it changes with the number of time periods.
What is this relationship?

(c) Argue why it seems unreasonable to directly extend the results from
finite periods to infinitely many periods.

Remark: A doubling strategy is sometimes called a martingale strategy.

Exercise 4.3 Consider a general arbitrage free model with a unique EMM
P ∗. Let C(K) = (S1

T −K)+ be a call option payoff with strike K and denote
by V0(C(K)) its price at time 0. Assume S0 is deterministic.

(a) Show that if K3 = λK1 + (1− λ)K2 for some strike prices K1, K2, and
K3, as well as λ ∈ [0, 1], then

V0(C(K3)) ≤ λV0(C(K1)) + (1− λ)V0(C(K2)).
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(b) Denote by µ = P ∗ ◦ (X1
T )−1 the law of X1

T . Show that

lim
ε↘0

V0(C(K))− V0(C(K − ε))
ε

= − 1
S0
T

µ

([
K

S0
T

,∞
))

.

Exercise 4.4 An American option is an option which can be exercised at
any point up until its maturity. If the option is exercised at time t, the
owner gets the discounted payoff Ut. We call U the discounted payoff process.
Assume the filtration is generated by U and that we have a unique pricing
measure. The value of the option is then assumed to be

Vt = ess sup
τ∈Tt,T

E[Uτ |Ft] (1)

where Tt,T is the set of stopping times with values in {t, . . . , T}.

(a) Show that V is the smallest supermartingale that dominates U , i.e.,
with the property Vt ≥ Ut almost surely for t = 0, . . . , T .
Hint: Show that the set {E[Uτ |Ft]|τ ∈ Tt,T } is upward directed and
use Theorem A.33. (Description of upward directedness is found in the
theorem.)

Define V̄ recursively according to

V̄T = UT ,

V̄t = max{Ut, E[V̄t+1|Ft]} t < T.

(b) Show that V̄ is the smallest supermartingale that dominates U and
conclude that V̄ = V almost surely.

(c) Define the stopping times σt = inf{n ≥ t|Un = V̄n} (you may assume
that these are indeed stopping times). Show that σt is a maximizer in
(1) by first showing that V̄ σt = (V̄s∧σt)s=t,...,T is a martingale.
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