Classification of closed surfaces: Any closed connected surface S is equivalent to exactly one of the surfaces M_g (g = 0, 1, 2, ...; a sphere with g handles) or N_h (h = 1, 2, 3, ...; a sphere with h crosscaps). The surfaces can be identified by their orientability and Euler characteristic: the M_g are orientable with $\chi(M_g) = 2 - 2g$, whereas the N_h are non-orientable with $\chi(N_h) = 2 - h$.

Definition: The **genus** g of a closed surface S is defined by $g(S) = 1 - \frac{1}{2}\chi(S)$ for an orientable surface and by $g(S) = 2 - \chi(S)$ for a non-orientable one.

Classification of closed surfaces with boundary: Any closed connected surface S with $n \ge 0$ boundary components is equivalent to exactly one of the surfaces M_g^n (g = 0, 1, 2, ...; an n-punctured sphere with g handles) or N_h^n (h = 1, 2, 3, ...; an n-punctured sphere with h crosscaps). The surfaces can be identified by their number of boundary components, orientability and Euler characteristic: the M_g^n are orientable with $\chi(M_g^n) = 2 -$ 2g - n, whereas the N_h^n are non-orientable with $\chi(N_h^n) =$ 2 - h - n.

For the proofs and further details see e.g. Robert's Notes, section 6.8.