Lecturer: Prof. Dr. Sara van de Geer

Serie 2

March 2nd, 2014
Q1. Let $G=(V, K)$ be an arbitrary finite and undirected graph with vertices V and edges K, i.e., V is a finite set and $K \subseteq\{\{x, y\} \in V: x \neq y\}$. The MAX-CUT problem is to find a subset $A \subseteq V$ such that the number of edges connecting A and A^{c} is as large as possible, i.e., $K_{A}=\left\{\{x, y\} \in K: x \in A, y \in A^{c}\right\}$. We want to show that there exists $A \subseteq V$ so that $\left|K_{A}\right| \geq \frac{1}{2}|K|$.
(a) Choose $A \subseteq V$ to be random set uniformly in 2^{V}. Calculate $\mathbb{P}\left(e \in K_{A}\right)$, i.e. $\mathbb{P}\left(\left\{A: e \in K_{A}\right\}\right)$
(b) Using the linearity of the expectation show that

$$
\mathbb{E}\left[\left|K_{A}\right|\right]=\frac{1}{2}|K| .
$$

(c) Show that there exists an A so that $\left|K_{A}\right| \geq \frac{1}{2}|K|$.

Solution

(a) By definition $e=x y \in K_{A}$ iff $x \in A \wedge y \notin A$ or $x \notin A \wedge y \in A$. Given that

$$
|\{x \in A, y \notin A\}|=\mid V \backslash\{x, y\}\} \mid=2^{|V|-2}
$$

we have that:

$$
\begin{aligned}
\mathbb{P}\left(x y \in K_{A}\right) & =\mathbb{P}(\{x \in A \wedge y \notin A\} \cup\{x \notin A \wedge y \in A\}) \\
& =\mathbb{P}(\{x \in A \wedge y \notin A\} \cup\{x \notin A \wedge y \in A\})+\mathbb{P}(\{x \in A \wedge y \notin A\} \cap\{x \notin A \wedge y \in A\}) \\
& =\mathbb{P}(\{x \in A \wedge y \notin A\})+\mathbb{P}(\{x \in A \wedge y \notin A\}) \\
& =\frac{2^{|V|-2}}{2^{|V|}}+\frac{2^{|V|-2}}{2^{|V|}}=\frac{1}{2}
\end{aligned}
$$

where the last part is follows from the symmetry of the problem.
(b) Since $\left|K_{A}\right|=\sum_{k \in K} \mathbf{1}_{k \in K_{A}}$, we have by linearity,

$$
\mathbb{E}\left[\left|K_{A}\right|\right]=\mathbb{E}\left[\sum_{k \in K} \mathbf{1}_{k \in K_{A}}\right]=\frac{|K|}{2}
$$

where (a) was used.
(c) Given that the expectation of $\left|K_{A}\right|$ is equal to $\frac{|K|}{2}$ there should be a value of A so that $\left|K_{A}\right| \geq \frac{|K|}{2}$ otherwise

$$
\begin{aligned}
\mathbb{E}\left[\left|K_{A}\right|\right] & =\sum_{k \in \mathbb{N}} k \mathbb{P}\left(\left|k_{A}\right|=k\right) \\
& =\sum_{k=1}^{\left\lceil\frac{|K|}{2}-1\right\rceil} k \mathbb{P}\left(\left|k_{A}\right|=k\right) \\
& \leq\left\lceil\frac{|K|}{2}-1\right\rceil \sum_{k=1}^{\left\lceil\frac{|K|}{2}-1\right\rceil} \mathbb{P}\left(\left|k_{A}\right|=k\right) \\
& =\left\lceil\frac{|K|}{2}-1\right\rceil \leq \frac{|K|}{2}
\end{aligned}
$$

where we have used $\lceil x\rceil:=\inf \{n \in \mathbb{N}: x \leq n\}$, the approximation of x by a bigger integer number. This helps to define the smaller integer smaller than $\frac{|K|}{2}$.

Q2. (a) Take $p \in[0,1]$ and $n \in \mathbb{N} \backslash\{0\}$. We say that $X \sim \operatorname{Bin}(n, p)$ if the distribution of X is

$$
\mathbb{P}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}, \quad k \in\{0,1, \ldots, n\}
$$

Show that this is indeed a probability distribution using 2 different methods:
i. Calculating $\sum_{k} \mathbb{P}(X=k)$.
ii. Representing this probability in terms of the box model with replacement.

Calculate the expected value of X using 2 different methods (the one listed above).
(b) Take $K, n \in \mathbb{N}$ and $N \in \mathbb{N} \backslash\{0\}$ with $k, n \leq N$. We say that a random variable $X \sim \operatorname{Hyp}(N, k, n)$ if its distribution is given by

$$
\mathbb{P}(X=k)=\frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}} \quad k \in\{\max \{0, n+K-N\}, . ., \min \{n, k\}\}
$$

Show that this is indeed a probability distribution using 2 different methods:
i. Calculating $\sum_{k} \mathbb{P}(X=k)$.

Hint: Calculate $(1+x)^{n}$ in two different ways and identify the terms.
ii. Representing this probability in the box model without replacement.

Calculate the expectation using both methods.

Solution

(a) Probability:
i.

$$
\begin{aligned}
\sum_{k=0}^{n} \mathbb{P}(X=k) & =\sum_{k=0}^{n}\binom{n}{k} p^{k}(1-p)^{n-k} \\
& =(p+(1-p))^{n}=1
\end{aligned}
$$

ii. If we have an urn with replacement with r red balls and b blue and we draw a ball n times, we have that

$$
\begin{aligned}
\mathbb{P}(\{\text { There are } k \text { red } n-k \text { blue }\}) & =\frac{\mid\{\text { There are } k \text { red and } n-k \text { blue }\} \mid}{\mid\{\text { Possible results }\} \mid} \\
& =\frac{\binom{n}{k} r^{k} b^{n-k}}{(r+b)^{n}} \\
& =\binom{n}{k}\left(\frac{r}{r+b}\right)^{k}\left(\frac{b}{r+b}\right)^{n-k} \\
& =\binom{n}{k} p^{k}(1-p)^{n-k}
\end{aligned}
$$

with $p=\frac{r}{r+b}$. Given that in every experiment we draw $k \in\{0, . ., n\}$ red balls makes the expression a probability measure, i.e.,

$$
\begin{aligned}
1 & =\mathbb{P}\left(\bigcup_{k=0}^{n}\{\text { We draw } k \text { red bals }\}\right) \\
& =\sum_{k=1}^{n} \mathbb{P}(\{\text { We draw } k \text { red bals }\}) \\
& =\sum_{k=0}^{n}\binom{n}{k} p^{k}(1-p)^{n-k}
\end{aligned}
$$

Expectation:

i.

$$
\begin{aligned}
\mathbb{E}[X] & =\sum_{k=1}^{n} k\binom{n}{k} p^{k}(1-p)^{n-k} \\
& =\sum_{k=1}^{n} \frac{n(n-1)!}{(n-k)!(k-1)!} p^{(k-1)+1}(1-p)^{n-k} \\
& =n p \sum_{j=0}^{n-1}\binom{n-1}{j} p^{j}(1-p)^{(n-1)-j}
\end{aligned}
$$

where we make the change of variables $j=k-1$. The sum we had is exactly the sum we calculated in the first part for a $\operatorname{Geom}(n-1)$, so it is 1 . Thus:

$$
\mathbb{E}[X]=n p
$$

ii. We know that the amount of red balls that are taken out at time n in a experiment with replacement have the distribution of X. So

$$
\begin{aligned}
\mathbb{E}[X] & =\mathbb{E}\left[\sum_{j=1}^{n} \mathbf{1}_{\{\text {In the } j \text {-th draw we get a red ball }\}}\right] \\
& =\sum_{j=1}^{n} \mathbb{P}(\{\text { In } j \text {-th draw we get a red ball }\}) .
\end{aligned}
$$

The probability that in the j-th draw we get a red ball is $\frac{K}{N}=p$, so:

$$
\mathbb{E}[X]=n p
$$

(b) Probability:
i. Note that

$$
\begin{aligned}
\sum_{n=0}^{N}\binom{N}{n} x^{n} & =(1+x)^{N} \\
& =(1+x)^{K}(1+x)^{N-K} \\
& =\sum_{k=0}^{K}\binom{K}{k} x^{k} \sum_{j=0}^{N-k}\binom{N-K}{j} x^{j} \\
& =\sum_{k=0}^{K} \sum_{j=0}^{N-K}\binom{K}{k}\binom{N-K}{j} x^{k+j} \\
& =\sum_{n=0}^{N} \sum_{k=\max \{0, K+n-N\}}^{\min \{n, k\}}\binom{K}{n}\binom{N-K}{n-k} x^{n},
\end{aligned}
$$

where we made the change of variables $n=k+j$. Given that two polynomials are equal iff all of its coefficients are equal we have that

$$
\begin{aligned}
& \sum_{k=\max \{0, K+n-N\}}^{\min \{u, k\}}\binom{K}{k}\binom{N-k}{n-k}=\binom{N}{n} \\
\Rightarrow & \sum_{k=\max \{0, K+n-N\}}^{\min \{u, k\}} \frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}=1,
\end{aligned}
$$

so it is a probability measure.
ii. If you have N balls K of which are red and $N-K$ blue and you are drawing them out without replacement. We have that the event $B:=$ "in the n-th draw we have extracted k balls red and $n-k$ balls blue" is given by

$$
\begin{aligned}
P(B) & =\frac{\mid\{\text { Ways of taking out } k \text { balls red and } n-k \text { blue }\} \mid}{\mid\{\text { Ways of taking out } \mathrm{n} \text { balls }\} \mid} \\
& =\frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}} .
\end{aligned}
$$

Given that in every experiment we extract $k \in\{0, . ., n\}$ red balls, the expression is a probability measure

Expectation:

i.

$$
\begin{aligned}
\mathbb{E}[X] & =\sum_{k=\max \{1, N-K-k\}}^{\min \{n, K\}} k \frac{\binom{K}{k}\binom{N-k}{n-k}}{\binom{N}{n}} \\
& =K \sum_{k=\max \{1, N-K-k\}}^{\min \{n, K\}} \frac{\binom{K-1}{k-1}\binom{N-1)-(K-1)}{n-1)-(k-1)}}{\binom{N}{n}} \\
& =K \frac{1}{\binom{N}{n}} \sum_{u=\max \{0, N-K-k\}}^{\min \{n-1, K-1\}}\binom{K-1}{u}\binom{(N-1)-u}{(n-1)-u} \\
& =K \frac{\binom{N-1}{n-1}}{\binom{N}{n}}=n \frac{K}{N} .
\end{aligned}
$$

where we have used the sum we calculated in the first part for a $\operatorname{Hyp}(N-1, k-$ $1, n-1$).
ii. We see that $X=\sum_{j=1}^{n} \mathbf{1}_{B_{j}}$ where B_{j} is "in the n-th drawing we take a red ball". Note that cardinality of B_{j} does not depend on j, because we can always make a bijection between the experiments where in the n-th drawing we get a red ball with the ones where in the 1st drawing we get a red ball. With this we have

$$
\mathbb{P}\left(B_{j}\right)=\mathbb{P}\left(B_{1}\right)
$$

and since $\sum_{j=1}^{N} \mathbf{1}_{B_{j}}=K$ we conclude

$$
K=\mathbb{E}\left[\sum_{j=1}^{N} \mathbf{1}_{B_{j}}\right]=N \mathbb{P}\left(B_{1}\right)
$$

So we have that

$$
\mathbb{E}(X)=\sum_{j=1}^{n} \mathbb{P}\left(B_{j}\right)=n \frac{K}{N}
$$

Q3. The voting problem Assume you have n votes in an election with two candidate (all people vote for one and only one of them) and the winning candidate have k more votes than the loser. If the votes were counted in a random way (the uniform measure in all possible ways of ordering the votes). What is the probability that there was never a moment, except the beginning, where the loser candidate has the same number or more number of votes than the winning one.
Hint: Define $\left(S_{l}\right)_{0 \leq n \leq N}:=\sum_{i=1}^{l} X_{i}$ where

$$
X_{i}:=\left\{\begin{aligned}
1 & \text { the vote was for the winner } \\
-1 & \text { the vote was for the loser. }
\end{aligned}\right.
$$

Note that the event we are looking for is $A:=\bigcap_{l=1}^{n}\left\{w \in \Omega: S_{l}(\omega)>0\right\}$, calculate $|A|$ and $|\Omega|$.

Solution

Note that we know that $S_{0}=0$ and $S_{n}=k$, also $n-k$ and $n+k$ should be pair. Also we know that the law of S is uniform in the set

$$
\Omega:=\left\{\left(\omega_{j}\right)_{j=0}^{n}: \omega_{0}=0, \omega_{n}=k, \omega_{j}-\omega_{j-1}= \pm 1\right\}
$$

This means

$$
\left|\left\{\left(\omega_{0}^{n}\right): \omega_{0}=0, \omega_{n}=k, \omega_{k}-\omega_{k+1}= \pm 1\right\}\right|=\mathbb{P}\left(S_{n}=k\right) 2^{n}=\binom{n}{\frac{n+k}{2}}
$$

where S_{n} is a random walk. Let's calculate the cardinal of A, the first step should always be 1 , so we know that we have to count the numbers of simple walks that start in 1 and in time $S_{n-1}=k$ and that never touches 0 . This is equivalent to (using the reflexion principle Skript 2.33)

$$
\begin{aligned}
|A| & =\left|\left\{\left(\omega_{0}^{n-1}\right): \omega_{0}=0, \omega_{n-1}=k-1, \omega_{k}-\omega_{k+1}= \pm 1, \omega_{n}>-1\right\}\right| \\
& =\mathbb{P}\left(T_{-1}>n-1, S_{n-1}=k-1\right) 2^{n-1} \\
& =\left[\mathbb{P}\left(S_{n-1}=k-1\right)-\mathbb{P}\left(T_{-1}>n-1, S_{n-1}=k-1\right)\right] 2^{n-1} \\
& =\left[\mathbb{P}\left(S_{n-1}=k-1\right)-\mathbb{P}\left(S_{n-1}=-1-k\right)\right] 2^{n-1} \\
& =\binom{n-1}{\frac{n+k}{2}-1}-\binom{n-1}{-1+\frac{n-k}{2}} .
\end{aligned}
$$

Then

$$
\begin{aligned}
\mathbb{P}(A) & =\frac{\binom{n-1}{\frac{n+k}{2}-1}-\binom{n-1}{-1+\frac{n-k}{2}}}{\binom{n+k}{n+k}} \\
& =\frac{n+k}{2 n}-\frac{n-k}{2 n} \\
& =\frac{k}{n} .
\end{aligned}
$$

Have a nice week ৫ D!!.

