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Q1. Let X be a normal random variable.

(a) Prove that if we take Y := X2, then fY (y) = ce−
y
2
√
y1{y≥0} (We say that Y is distributed

according to a χ-squared with one degree of freedom).

(b) If Y1 and Y2 are two independent copies of Y , prove that fY1+Y2 = c2e
−x

21{x≥0}. What
is the name of this distribution.

(c) With the help of induction prove that
∑n

i=1 Yi, where (Yi)
n
i=1 are independent copies of

Y , has as a density function

f∑n
i=1 Yi

(x) = cnx
n

2
− 1e−

x
21{x≥0}.

This is call a χ-squared distribution with n degrees of freedom.

Solution:

(a) We have that the CDF of Y for y ≥ 0 is given by:

FY (y) = P (Y ≤ y) = P (−√y ≤ X ≤ √y) = 2FX(
√
y)− 1.

Then, taking the derivative we have:

fY (y) = fx(
√
y)y−

1
21{y≥0} = ce

y
2 y−

1
21{y≥0}.

(b) By the convolution formula we have that:

fY1+Y2(x) =

∫ x

0

fY (x− y)fY (y)dy1{x≥0}

= c21

∫ x

0

(x− y)−
1
2 e−

x−y
2 y−

1
2 e−

y
2 dy1{x≥0}

= c21e
−x

2

∫ x

0

(x− y)−
1
2y−

1
2dy1{x≥0}

= c21

(∫ 1

0

x(x− ux)−
1
2 (ux)−

1
2du

)
e−

x
21{x≥0}

=

(
c21

∫ 1

0

(1− u)−
1
2u−

1
2du

)
e−

x
21{x≥0}.

This distribution is that of an exponential random variable.
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(c) It's clear that the base case is true, now let's prove the inductive step. Suppose that
the proposition is true for n− 1, then

f∑n
i=1 Yi

(x) =

∫ x

0

fY (x− y)f∑n−1
i=1 Yi

(y)dy1{x≥0}

= c1cn−1

∫ x

0

(x− y)−
1
2 e−

x−y
2 y

n−1
2
−1e−

y
2 dy1{x≥0}

= c1cn−1e
−x

2

∫ 1

0

(x− xu)−
1
2 (xu)

n−1
2
−1xdu1{x≥0}

=

(
c1cn−1

∫ 1

0

(1− u)−
1
2 (u)−

n−1
2
−1du

)
e−

x
2x

n
2
−11{x≥0}.

Q2. Take the following probability space (Ω,A,P) = ([0, 1],B([0, 1]), λ |[0,1]), where λ |[0,1] is the
Lebesgue measure over [0, 1]. Let Xn(ω) = 1An(ω) a sequence of random variables with
An ∈ B([0, 1]).

(a) Under which condition for (An)n∈N we have that Xn
P→ 0.

(b) Write the event {ω : Xn(ω)→ 0} with help of the sets (An)n∈N.

(c) Find a sequence (An)n∈N of events so that Xn
P→ 0 but {ω : Xn(ω)→ 0} = ∅.

Solution:

(a) We know that for all ε ≤ 1
2

P(|Xn| ≤ ε) = P(|Xn| = 0) = P(Ac
n),

so Xn
P→ 0 i� P(Ac

n)→ 1.

(b) Given that Xn takes only values in {0, 1} we know it converges if from a point onward
it only takes the value 0, so

{ω : limXn(ω) = 0} =
⋃
k∈N

⋂
n≥k

Ac
n = lim inf Ac

n.

(c) For n ∈ N de�ne rn = blog2(n)c and de�ne kn = n− 2rn . Take

An =

[
kn
2rn

,
kn + 1

2rn

]
,

note that P(An) = rn → 0, so Xn
P→ 0. Additionally note that for each rn there are

2rn+1 − 2rn = 2rn di�erent kn associated to it and also that:

P

( ⋃
n:rn=r

An

)
= 2rn

1

2rn
= 1,

so
⋃

n:rn=r An = [0, 1]. Then we know that for each r ∈ N and for all x ∈ [0, 1] there
exits n ∈ N so that rn = r and x ∈ An, so Xn(x) is 1 in�nitely many times. Thus,
{ω : Xn(ω)→ 0} = ∅.
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Q3. Let (Xi)i≥1 be a sequence of random variables with

E (Xi) = µ ∀i,
V ar(Xi) = σ2 <∞ ∀i,
Cov(Xi, Xj) = R(|i− j|) ∀i, j.

De�ne Sn :=
∑n

i=1Xi.

(a) Prove that if limk→∞R(k) = 0 then limn→∞
Sn

n
= µ in probability.

(b) Prove that if
∑

k∈N |R(k)| <∞ then limn→∞ nV ar(
Sn

n
) exists.

Solution:

(a) Thanks to �eby²ev inequality

P

[∣∣∣∣Sn

n
− µ

∣∣∣∣ ≥ ε

]
≤ 1

ε2
V ar

(
Sn

n

)
it's enough to prove that V ar(Sn

n
)→ 0 (n→∞).

Computing the variance we have:

V ar

(
Sn

n

)
= V ar

(
1

n

n∑
i=1

Xi

)

=
1

n2

(
n∑

i=1

V ar(Xi) + 2
∑
i<j

Cov(Xi, Xj)

)

=
1

n2

(
nσ2 + 2

n−1∑
k=1

(n− k)R(k)

)

=
1

n

(
σ2 + 2

n−1∑
k=1

(
1− k

n

)
R(k)

)

Then it's enough to prove that:

lim
n→∞

2

n

n−1∑
k=1

(n− k
n

)
R(k) = 0 .

Thanks to Schwarz inequality:

∀i, j |R(|i− j|)| = |Cov[Xi, Xj]| ≤
√
V ar[Xi]

√
V ar[Xj] = σ2 <∞.
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Take η > 0. Then there exist k0 ∈ N, so that |R(k)| < η for all k > k0. Thus:

i)
∣∣∣ 2
n

k0∑
k=1

(n− k
n

)
R(k)

∣∣∣ ≤ 2k0
n
σ2 < η , for n su�ciently big

ii)
∣∣∣ 2
n

n−1∑
k=k0+1

(n− k
n

)
R(k)

∣∣∣ ≤ 2

n

n−1∑
k=k0+1

n− k
n

η ≤ 2

n
η

n−1∑
k=0

n− k
n︸ ︷︷ ︸
≤1

≤ 2η.

Then,
∣∣∣ 2
n

n−1∑
k=1

(n− k
n

)
R(k)

∣∣∣ < 3η ∀ n > no =
2k0σ

2

η
.

In conclusion limn→∞
2
n

∑n−1
k=1

(
n−k
n

)
R(k) = 0 . So limn→∞

Sn

n
= µ in probability.

(b) We just have to compute

lim
n→∞

nV ar

(
Sn

n

)
= lim

n→∞

(
σ2 + 2

n−1∑
k=1

(
1− k

n

)
R(k)

)

= σ2 + 2
∞∑
k=1

R(k)− 2 lim
n→∞

n−1∑
k=1

k

n
R(k) .

De�ne:

an(k) :=

{
k
n
R(k) (k < n)

0 (k ≥ n)

it's clear that an(k) → 0 (n → ∞) for all k. Then we just have to use dominated
convergence to prove that this part goes to 0. Note that |an(k)| ≤ |R(k)|and |R(k)| is
absolutely convergente. So:

lim
n→∞

n−1∑
k=1

k

n
R(k) = lim

n→∞

n−1∑
k=1

an(k) = lim
n→∞

∞∑
k=1

an(k) =
∞∑
k=1

lim
n→∞

an(k) = 0

Then

lim
n→∞

nV ar
(Sn

n

)
= σ2 + 2

∞∑
k=1

R(k).

Q4. Compute the limit of limn→∞ e
−n∑n

k=0
nk

k!

Hint: You can use the central limit theorem (Skript Theorem 4.3) for (Xi)i∈N i.d.d. random
variables such that Xi ∼ Poi(1).

Solution

If we de�ne Sn :=
∑n

i=1Xi ∼ Poi(n), we have that:

e−n
n∑

k=0

nk

k!
= P(Sn ≤ n) = P(Sn ≤ nE (X1)) = P

(
1√
n

(Sn − nE (X1) ≤ 0)

)
→ 1

2
.
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