Lecturer: Prof. Dr. Sara van de Geer

Serie 12

May 25th, 2015
Q1. We toss 100 times a coin and we get 60 head. We want to do a test to know whether the coin is fair.
(a) Test the hypothesis with a 0.01 level of significance. Should this test be one or twotailed?.
(b) What is the biggest amount of head should we have in 100 tossings so we cannot discard $H_{0}:=$ "The coin biased towards tail".
(c) Calculate all p_{0} so that the null hypothesis

$$
H_{0}\left(p_{0}\right):=\text { "Probability of head is } p_{0} ",
$$

would not be rejected in a test with 0.05 level of significance.
Hint: It will be useful to use the central limit theorem in all of this question.
Q2. Consider the null hypothesis $X \sim f(x) d x$ and the alternative $X \sim f(x-1) d x$ for the following cases:

$$
\begin{aligned}
& f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}, \\
& f(x)=\frac{1}{\pi\left(1+x^{2}\right)} .
\end{aligned}
$$

Compute the form of the rejection of the likelihood area ratio test (Neyman-Pearson Lemma). Comment the difference

Q3. Let $\left(X_{i}\right)_{i=1}^{n}$ be an i.i.d F-distributed sequence. Let F be absolutely continuous. The Sign test is a test where the null hypothesis is that the median of X is m, i.e.

$$
F^{-1}(m)=\frac{1}{2} .
$$

Use the Theorem 6.4 of the Skript to construct the test with significance level $\alpha=0.05$.

