Probabilities and statistics

Lecturer: Prof. Dr. Sara van de Geer

Prof. Dr. Martin Larsson

Serie 8

April 28th, 2015

Q1. Let X and Y two independent standard normal random variables (N(0,1)). Define the random variable

$$Z := \left\{ \begin{array}{ll} X & \text{if } Y \ge 0, \\ -X & \text{if } Y < 0. \end{array} \right.$$

- (a) Compute the distribution of Z.
- (b) Compute the correlation between X and Z.
- (c) Compute $\mathbb{P}(X+Z=0)$.
- (d) Does (X, Z) follow a multivariate normal distribution?.
- **Q2.** (a) Take X a random variable. Prove that for all $\lambda \geq 0$

$$\mathbb{P}(X \ge t) \le \exp(e^{-\lambda t}) \mathbb{E}\left(e^{\lambda X}\right).$$

- **(b)** Define $\phi_X(\lambda) := \ln \left(\mathbb{E} \left(e^{\lambda X} \right) \right)$. Prove that $\phi(\lambda) \ge \lambda \mathbb{E} \left(X \right)$.
- (c) Prove that

$$\mathbb{P}(X \ge t) \le \mathbb{E}\left(e^{-\sup_{\lambda \ge 0} \{\lambda t - \phi_X(\lambda)\}}\right).$$

- (d) If $X \sim N(0, \sigma)$, calculate $\phi_X(\lambda)$.
- (e) Prove that if X is a positive random variable

$$\mathbb{E}(X) = \int_0^\infty \mathbb{P}(X \ge t) dt$$

(f) Show that if $X \sim N(0, \sigma)$ and Y is a random variable such that $\psi_Y(\lambda) \leq \psi_X(\lambda)$, then

$$\mathbb{E}(Y^2) \le 2\sigma^2.$$

Q3. Let X and Y be random variables with joint density distribution given by

$$f_{X,Y}(x,y) = e^{-x^2y} \mathbf{1}_{\{x \ge 1\}} \mathbf{1}_{\{y \ge 0\}}$$

- (a) Why is this a probability measure?
- (b) What is the density function of X.
- (c) Compute $\mathbb{P}(Y \leq \frac{1}{X^2})$.
- **Q4.** (a) Let μ_n and ν_n two sequence of probability measure on \mathbb{R} . and $\epsilon_n \in (0,1)$ with $\epsilon_n \to 0$. Prove that if $\mu_n \to \mu$ in distribution, then $(1 \epsilon_n)\mu_n + \epsilon_n\nu_n \to \mu$ in distribution.

- (b) Construct with the help of a) a sequence μ_n so that $\mu_n \to \mu$ in distribution but $\lim_{n\to\infty} \int |x| d\mu_n(x) \neq \int |x| d\mu(x)$.
- (c) Prove that if $\mu_n \to \mu$ and $\sup_n \int x^2 d\mu_n(x) = K < \infty$ then

$$\int |x|d\mu_n(x) \to \int |x|d\mu(x).$$

HINT: For all M prove that

$$\int \min\{|x|, M\} d\mu_n(x) \to \int \min\{|x|, M\} \le \frac{x^2}{M} d\mu(x).$$