Lecturer: Prof. Dr. Sara van de Geer
Prof. Dr. Martin Larsson

Serie 1

February 24th, 2014
Q1. We throw simultaneously two dices, one green and one red. Consider the following events:

- $W_{1}:=$ Neither of the dices has a result greater than 2.
- $W_{2}:=$ The green and the red one have the same number on them.
- $W_{3}:=$ The number on the green is 3 times the number on the red.
- $W_{4}:=$ The number on the red is by one greater than the number on the green one.
- $W_{5}:=$ The number of the green one is greater or equal than the number on the red one.
(a) Write a suitable space Ω where all of these events can live.
(b) Describe W_{i} as a subsets of Ω.
(c) If you were colorblind (you cannot differentiate green and red). How does the sample space Ω change?, which W_{i} can live in this space?.

Solution

(a) $\Omega=\{1,2,3,4,5,6\}^{2}$. The first coordinate will represent the green dice and the second one the red dice.
(b) - $W_{1}:=\{(x, y) \in \Omega: x \leq 2, y \leq 2\}=\{1,2\}^{2}$.

- $W_{2}:=\{(x, y) \in \Omega: x=y\}=\{(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)\}$.
- $W_{3}:=\{(x, y) \in \Omega: x=3 y\}=\{(3,1),(6,2)\}$.
- $W_{4}:=\{(x, y) \in \Omega: x+1=y\}=\{(1,2),(2,3),(3,4),(4,5),(5,6)\}$.
- $W_{5}:=\{(x, y) \in \Omega: x \geq y\}$.
(c) We can define the equivalence relation \sim as

$$
(x, y) \sim(z, w) \Leftrightarrow\{x, y\}=\{z, w\}
$$

then $\tilde{\Omega}=\Omega / \sim=\{\{x, y\}: x, y \in \Omega\}$. The W_{i} that will survive are those so that if $(x, y) \in W_{i}$ then $(y, x) \in W_{i}$. This happens only for W_{1}, W_{2}.

Q2. You have an urn with $4 k$ balls each one numbered with a different number in $\{1, \ldots, 4 k\}$. At time j you take out one ball, look at its number and put it back, you repeat this experiment n times. Define

- $A_{j}:=$ The number taken out in the j-th time is bigger than $2 k$.
- $B_{j}:=$ The number taken out in the j-th time is even.
(a) Write in terms of $\left(A_{j}\right)_{j=1}^{n}$ and $\left(B_{j}\right)_{j=1}^{n}$ the following events
i. $A:=$ Between 1 and n there was never a number bigger than $2 k$.
ii. $B:=$ Between 1 and n there was at least one even number.
iii. $C:=$ The amount of balls bigger than $2 k$ is bigger or equal than the amount of even balls.
(b) Describe in words the following events
i. $\left(\bigcup_{j=1}^{n}\left(A_{j}\right)^{c}\right)^{c}$.
ii. $\bigcup_{j=1}^{n-2}\left(A_{j} \cap A_{j+1} \cap B_{j+2}\right)$.
iii. $\bigcup_{n}^{n} \bigcap_{j=n}^{n}\left(A_{j} \cap B_{j}\right)$.
(c) For all $A \subseteq \Omega=\{1, . ., 4 k\}^{n}$ define

$$
\mathbb{P}(A)=\frac{|A|}{(4 k)^{n}},
$$

Show that for all strictly increasing sequences $\left(j_{m}\right)_{m=1}^{N_{j}},\left(l_{m}\right)_{m=1}^{N_{l}}$ we have that

$$
\mathbb{P}\left(\bigcap_{m=1}^{N_{j}} A_{j_{m}} \cap \bigcap_{m=1}^{N_{l}} B_{l_{m}}\right)=\left(\frac{1}{2}\right)^{N_{l}+N_{j}} .
$$

Solution

(a) i. $A=\bigcap_{j=1}^{n} A_{j}^{c}$.
ii. $B=\bigcup_{j=1}^{n} B_{j}$.
iii. $C=\bigcup_{\substack{C, D \subseteq\{1, \ldots, n\} \\|\bar{C}|=|D|}}\left(\bigcap_{j \in C} A_{j} \cap \bigcap_{j \in D^{c}} B_{j}^{c}\right)$.
(b) i. $\left(\bigcup_{j=1}^{n}\left(A_{j}\right)^{c}\right)^{c}=\bigcap_{j=1}^{n} A_{j}$: All the number taken are bigger than $2 k$.
ii. $\bigcup_{j=1}^{N-2}\left(A_{j} \cap A_{j+1} \cap B_{j+2}\right)$: There exists one moment where in two consecutive drawings we got a number bigger than $2 k$ and in the following extraction we got an even number.
iii. $\bigcup_{n}^{N} \bigcap_{j=n}^{N} A_{j} \cap B_{j}$:There is a moment after we only extract number which are even and bigger than $2 k$.
(c) Take $B_{j} \subseteq\{1, \ldots n\}$. It's easy to prove by induction that for sets of the form

$$
\bigotimes_{j=1}^{n} B_{j}:=\left\{\left(x_{i}\right)_{i=1}^{n}: x_{i} \in B_{j}\right\}
$$

we have that

$$
\left|\bigotimes_{j=1}^{n} B_{j}\right|=\prod_{j=1}^{n}\left|B_{j}\right|
$$

Define

$$
\begin{aligned}
& A:=\{j \in \mathbb{N}: 4 k \geq j>2 k\} \\
& B:=\{j \in \mathbb{N}: 4 k \geq j=2 \tilde{j}, \tilde{j} \in \mathbb{N}\}
\end{aligned}
$$

It's clear that $A, B \subseteq\{j \in \mathbb{N}: j \leq 4 k\}$ and

$$
|A|=|B|=2 k=2|A \cap B|
$$

For simplifying notation in this exercise we will use the following notation. Take $E \subseteq$ $\{1, \ldots, n\}$ a set and $\epsilon \in\{0,1\}$ define

$$
E^{\epsilon}= \begin{cases}E & \text { if } \epsilon=1 \\ \{1, \ldots, n\} & \text { if } \epsilon=0\end{cases}
$$

Then we just have to realize that:

$$
\bigcap_{m=1}^{N_{j}} A_{j_{m}} \cap \bigcap_{m=1}^{N_{l}} B_{l_{m}}=\bigotimes_{j=1}^{n}\left(A^{\left.\mathbf{1}_{\left\{j=j_{m}, m \in \mathbb{N}\right\}} \cap B^{\mathbf{1}_{\left\{j=l_{m}, m \in \mathbb{N}\right\}}}\right), ~ \text {. }}\right.
$$

then

$$
\begin{aligned}
\frac{\left|\left\{\bigcap_{m=1}^{N_{j}} A_{j_{m}} \cap \bigcap_{m=1}^{N_{l}} B_{l_{m}}\right\}\right|}{(4 k)^{n}} & =\frac{1}{(4 k)^{n}} \bigotimes_{j=1}^{n}(4 k) \frac{1^{\mathbf{1}_{\left\{j=j_{m}, m \in \mathbb{N}\right\}}} \frac{1}{2}}{\mathbf{1}_{\left\{j=l_{m}, m \in \mathbb{N}\right\}}} \\
& =\left(\frac{1}{2}\right)^{N_{l}+N_{j}}
\end{aligned}
$$

Q3. Let $\left(A_{j}\right)_{j=1}^{n}$ be events:
(a) Show that:

$$
\mathbf{1}_{\bigcup_{j=1}^{n} A_{j}}=1-\prod_{j=1}^{n}\left(1-\mathbf{1}_{A_{j}}\right)
$$

use it to prove that:

$$
\mathbb{P}\left[\bigcup_{j=1}^{n} A_{j}\right]=\sum_{k=1}^{n}(-1)^{k+1} \sum_{1 \leq i_{1}<\ldots<i_{k} \leq n} \mathbb{P}\left[\bigcap_{j=1}^{k} A_{i_{j}}\right]
$$

(b) Using induction prove the following statements:

$$
\begin{aligned}
& \mathbb{P}\left[\bigcup_{j=1}^{n} A_{j}\right] \leq \sum_{j=1}^{n} \mathbb{P}\left[A_{j}\right]-\sum_{j=1}^{n-1} \mathbb{P}\left[A_{j} \cap A_{j+1}\right] \\
& \mathbb{P}\left[\bigcup_{j=1}^{n} A_{j}\right] \geq \sum_{j=1}^{n} \mathbb{P}\left[A_{j}\right]-\sum_{i, j=1, i \neq j}^{n} \mathbb{P}\left[A_{j} \cap A_{j+1}\right]
\end{aligned}
$$

Solution

(a) It's clear that

$$
\begin{aligned}
\mathbf{1}_{\bigcup_{j=1}^{n} A_{j}} & =1-\mathbf{1}_{\bigcap_{j=1}^{n} A_{j}^{c}} \\
& =1-\prod_{j=1}^{n} \mathbf{1}_{A_{j}^{c}} \\
& =1-\prod_{j=1}^{n}\left(1-\mathbf{1}_{A_{j}}\right),
\end{aligned}
$$

Then we can just use the product formula to have:

$$
\prod_{j=1}^{n}\left(1-\mathbf{1}_{A_{j}}\right)=1+\sum_{k=1}^{n} \sum_{1 \leq i_{1}<\ldots<i_{k} \leq n} \prod_{j=1}^{k}-\mathbf{1}_{A_{i_{k}}} .
$$

Taking expectations at both sides

$$
\begin{aligned}
\mathbb{P}\left[\bigcup_{j=1}^{n} A_{j}\right] & =\mathbb{E}\left[\mathbf{1}_{\bigcup_{j=1}^{n} A_{j}}\right] \\
& =-\mathbb{E}\left[\sum_{k=1}^{n} \sum_{1 \leq i_{1}<\ldots<i_{k} \leq n} \prod_{j=1}^{k}-\mathbf{1}_{A_{i_{k}}}\right] \\
& =\sum_{k=1}^{n}(-1)^{k+1} \sum_{1 \leq i_{1}<\ldots<i_{k} \leq n} \mathbb{P}\left[A_{i_{1}} \cap \ldots \cap A_{i_{k}}\right] .
\end{aligned}
$$

(b) We want to use induction. The base case are clearly true, i.e., when $n=1$ both formulas are true.For the inductive step suppose the formulas are true for an integer n and we will try to prove them for $n+1$. The first one:

$$
\begin{aligned}
\mathbb{P}\left[\bigcup_{j=1}^{n+1} A_{j}\right] & =\mathbb{P}\left[\bigcup_{j=1}^{n} A_{j} \cup A_{n+1}\right] \\
& =\mathbb{P}\left[\bigcup_{j=1}^{n} A_{j}\right]+\mathbb{P}\left[A_{n+1}\right]-\mathbb{P}\left[\bigcup_{j=1}^{n} A_{j} \cap A_{n+1}\right] \\
& \leq \mathbb{P}\left[\bigcup_{j=1}^{n} A_{j}\right]+\mathbb{P}\left[A_{n+1}\right]-\mathbb{P}\left[A_{n} \cap A_{n+1}\right] \\
& \leq \sum_{j=1}^{n} \mathbb{P}\left[A_{j}\right]-\sum_{j=1}^{n-1} \mathbb{P}\left[A_{j} \cap A_{j+1}\right]+\mathbb{P}\left[A_{n+1}\right]-\mathbb{P}\left[A_{n} \cap A_{n+1}\right] \\
& =\sum_{j=1}^{n+1} \mathbb{P}\left[A_{j}\right]-\sum_{j=1}^{n} \mathbb{P}\left[A_{j} \cap A_{j+1}\right] .
\end{aligned}
$$

For the second formula we have:

$$
\begin{aligned}
\mathbb{P}\left[\bigcup_{j=1}^{n+1} A_{j}\right] & =\mathbb{P}\left[\bigcup_{j=1}^{n} A_{j} \cup A_{n+1}\right] \\
& =\mathbb{P}\left[\bigcup_{j=1}^{n} A_{j}\right]+\mathbb{P}\left[A_{n+1}\right]-\mathbb{P}\left[\bigcup_{j=1}^{n}\left(A_{j} \cap A_{n+1}\right)\right] \\
& \geq \mathbb{P}\left[\bigcup_{j=1}^{n} A_{j}\right]+\mathbb{P}\left[A_{n+1}\right]-\sum_{j=1}^{n} P\left(A_{j} \cap A_{n+1}\right) \\
& \geq \sum_{j=1}^{n} \mathbb{P}\left[A_{j}\right]-\sum_{i, j=1, i \neq j}^{n} \mathbb{P}\left[A_{j} \cap A_{i}\right]+\mathbb{P}\left[A_{n+1}\right]-\sum_{j=1}^{n} P\left(A_{j} \cap A_{n+1}\right) \\
& =\sum_{j=1}^{n+1} \mathbb{P}\left[A_{j}\right]-\sum_{i, j=1, i \neq j}^{n+1} \mathbb{P}\left[A_{j} \cap A_{i}\right] .
\end{aligned}
$$

