Summary of Probability and Statistics, Spring 2015^{1}

Sara van de Geer

Chapter 1 \& 2

March 5, 2015

[^0]
Dictionary for Probability and Statistics, Chapter 1 \& 2

English \rightarrow German
betting strategy: Spielsystem
conditional probability: bedingte Wahrscheinlichkeit
event: Ereigniss
expectation \mathbb{E} : Erwartungswert \mathbb{E}
matching problem: Garderobenproblem
outcome ω : Ergebniss ω
partition of Ω : Zerlegung von Ω
power set: Potenzmenge
probability measure \mathbb{P} : Wahrscheinlichkeitsmass \mathbb{P}
probability of success: Erfolgswahrscheinlichkeit
probability space $(\Omega, \mathcal{A}, \mathbb{P})$: Wahrscheinlichkeitsraum $(\Omega, \mathcal{A}, \mathbb{P})$
random variable X : Zufallsvariabele X
random walk: Irrfahrt
replacement: Zurücklegen
sample space Ω : Grundraum Ω
uniform distribution: Gleichverteilung

1 Chapter 1: Introduction

The sample space is denoted by Ω and subsets A of Ω are called events. In Chapter 2 we only consider countable Ω. In Chapter 3 we will introduce a collection \mathcal{A} of "measurable" subsets of Ω. When Ω is countable on can take \mathcal{A} as the collection of all subsets, the so-called power set of Ω. We need measure theory to deal with uncountable Ω.
A probability measure \mathbb{P} is a mapping

$$
\mathbb{P}: \mathcal{A} \rightarrow[0,1]
$$

which satisfies certain conditions: the axioms of Kolmogorov (see Chapter 3). For $A \in \mathcal{A}$ we say that $\mathbb{P}(A)$ is the probability of the event A.

There are several interpretations of probability. It can express one's belief in a certain event ${ }^{2}$. One can have a frequentist interpretation: the probability of an event is the frequency of occurrences of this event if we repeat the experiment infinitely often. One may want to define the probability of A as the number of outcomes where A occurs divided by the total number of outcomes ${ }^{3}$ (this corresponds to the uniform distribution on all possible outcomes). One may also want to view probabilities (randomness) as complexity measures.

[^1]
2 Chapter 2: Discrete probability space

2.1. Basics

Let Ω be countable and \mathcal{A} be the power set of Ω.

Definition Consider a given mapping

$$
p: \Omega \rightarrow[0,1]
$$

with $\sum_{\omega} p(\omega)=1$. We define

$$
\mathbb{P}(A):=\sum_{\omega \in A} p(\omega), \quad A \in \mathcal{A}
$$

We call $(\Omega, \mathcal{A}, \mathbb{P})$ a discrete probability space.
Two important discrete distributions
Geometric distribution $\Omega:=\{1,2, \ldots\}, p(\omega):=(1-p)^{\omega-1} p$ with $0<p<1$ a parameter.

Poisson distribution $\Omega=\{0,1,2, \ldots\}, p(\omega):=\mathrm{e}^{-\lambda} \lambda^{k} / k$! with $\lambda>0$ a parameter. We call this the Poisson (λ)-distribution.

Random variables and expectation

Definition A random variable X is a mapping

$$
X: \Omega \rightarrow \mathbb{R}
$$

We write

$$
\mathbb{P}(X=x):=\mathbb{P}(\{\omega: X(\omega)=x\})
$$

Definition The expectation of a random variable X is

$$
\mathbb{E} X:=\sum_{x} x \mathbb{P}(X=x)
$$

Lemma Suppose $X \in\{0,1,2, \ldots\}$. Then

$$
\mathbb{E} X=\sum_{k=0}^{\infty} \mathbb{P}(X>k)
$$

Linearity of the expectation Let X and Y be random variables and a and b be constants. Then

$$
\mathbb{E}(a X+b Y)=a \mathbb{E} X+b \mathbb{E} Y
$$

2.2. Urn models

Consider an urn with k white balls and $N-k$ red balls. Define $p:=k / N$. We sample at random n balls from the urn.

1) Sampling with replacement gives a binomial distribution:

$$
\mathbb{P}(x \text { white balls })=\binom{n}{k} p^{x}(1-p)^{N-x}, x \in\{0,1, \ldots, n\} .
$$

2) Sampling without replacement gives a hypergeometric distribution:

$$
\mathbb{P}(x \text { white balls })=\frac{\binom{K}{x}\binom{N-K}{n-x}}{\binom{N}{n}}, x \in\{0,1, \ldots, n\} \cap[n+K-N, K] .
$$

Special case of binomial distribution: $p=1 / 2, n:=2 n$:

$$
\mathbb{P}(X=x)=\binom{2 n}{x} 2^{-2 n}, x \in\{0,1, \ldots, 2 n\} .
$$

So

$$
\mathbb{P}(X=x)=\binom{2 n}{n} 2^{-2 n} \sim \frac{1}{\sqrt{n \pi}},
$$

where the last result follows from Stirling's formula ${ }^{4}$.

2.3 Random walk

2.3.1. Definition of the random walk

Let $\Omega:=\left\{\omega=\left(x_{1}, \ldots, x_{N}\right): x_{i} \in\{ \pm 1\} \forall i\right\}$ and let \mathbb{P} be the uniform distribution:

$$
\mathbb{P}(A):=\frac{|A|}{|\Omega|}, \quad A \in \mathcal{A} .
$$

Definition 2.1 Consider the random variables $X_{i}(\omega):=i$-th component of $\omega \in \Omega, i=1, \ldots, N$. Let $S_{0}:=0$ and for $n=1, \ldots, N, S_{n}:=\sum_{i=1}^{n} X_{i}$. Then $\left\{S_{n}\right\}_{n=0}^{N}$ is called a random walk (starting at zero).

Theorem 2.1 We have

$$
\mathbb{P}\left(S_{n}=2 k-n\right)=\binom{n}{k} 2^{-n}, k=0,1, \ldots, n .
$$

Corollary It holds that
$\mathbb{P}\left(S_{2 n}=0\right)=\binom{2 n}{n} 2^{-2 n} \sim 1 / \sqrt{n \pi}$, $\mathbb{P}\left(S_{2 n-1}=1\right)=\mathbb{P}\left(S_{2 n}=0\right)$.

[^2]
2.3.2. First visit at level $a \neq o$ and first return to zero

Let $a \in \mathbb{Z}$ and

$$
T_{a}:=\min \left\{n \geq 1: S_{n}=a\right\} .
$$

If no such n exists we define $T_{a}:=\infty$.

Result

$\mathbb{P}\left(T_{a}>n\right) \rightarrow 0$ as $N \geq n \rightarrow \infty$,
$\mathbb{E} T_{a} \rightarrow \infty$ as $N \geq n \rightarrow \infty$
To prove this result we first prove
$\mathbb{P}\left(T_{a}>n\right)=\mathbb{P}\left(S_{n} \in(-a, a]\right), a \neq 0$, $\mathbb{P}\left(T_{0}>2 n\right)=\mathbb{P}\left(S_{2 n}=0\right)$.

Here in turn, we apply the reflection principle.

2.3.3. The arcsin law for the last visit at zero

Let $N:=2 N$ and

$$
L=\max \left\{0 \leq n \leq 2 N: S_{n}=0\right\} .
$$

Theorem 2.4 We have

$$
\mathbb{P}(L=2 n)=\binom{2 n}{n}\binom{2(N-n)}{N-n} 2^{-2 N}, n=0,1, \ldots, N
$$

Approximation For $N \rightarrow \infty$ and $n / N \rightarrow x \in[0,1]$

$$
\mathbb{P}(L=2 n) \sim \frac{1}{N} \frac{1}{\pi \sqrt{x(1-x)}} .
$$

This is called the arcsin law because

$$
\int_{0}^{x} \frac{1}{\pi \sqrt{u(1-u)}} d u=2 \arcsin (\sqrt{x}), 0<x \leq 1
$$

2.3.4. The impossibility of a winning betting strategy

Definition 2.2 An event $A \subset \Omega$ is called observable at time $n(0 \leq n \leq N)$ if its indicator function l_{A} can be written as

$$
1_{A}(\omega)=\phi_{n}\left(X_{1}(\omega), \ldots, X_{n}(\omega)\right), \forall \omega \in \Omega,
$$

where $\phi_{n}:\{ \pm 1\}^{n} \rightarrow\{0,1\}$ is a given function. The collection \mathcal{A}_{n} is defined as all events A that are observable at time n.

Definition 2.3 The mapping

$$
T: \Omega \rightarrow\{0,1, \ldots, N\}
$$

is called a stopping time if $\{T=n\} \in \mathcal{A}_{n}, n \in\{0, \ldots, N\}$.
We now consider random variables $\left\{V_{k}\right\}_{k=1}^{N}$.
Definition A random variable V_{k} is called observable at time $k-1$ if

$$
V_{k}(\omega)=\phi_{k-1}\left(X_{1}(\omega), \ldots, X_{k-1}(\omega)\right), \forall \omega \in \Omega,
$$

where $\phi_{k-1}:\{ \pm 1\}^{k-1} \rightarrow \mathbb{R}$ is a given function ${ }^{5}$.
Definition A betting strategy is $\left\{(V \cdot S)_{n}:=\sum_{k=1}^{n} V_{k} X_{k}: 1 \leq n \leq N\right\}$.
Impossibility of a winning betting strategy: For any stopping time T

$$
\mathbb{E}(V \cdot S)_{T}=0 .
$$

This result can be proved by writing

$$
\tilde{V}_{k}:=1\{T \geq k\} \in \mathcal{A}_{k-1}
$$

i.e. \tilde{V}_{k} it is observable at time $k-1(k=1, \ldots, N)$.

2.4. Conditional probability

Definition Let $\mathbb{P}(B)>0$. The conditional probability of A given B is defined as

$$
\mathbb{P}(A \mid B):=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} .
$$

Definition A partition of Ω is a collection of mutually disjoint events $\left\{B_{i}\right\}_{i \in I}$ such that $\cup_{i \in I} B_{i}=\Omega$.

Theorem 2.7 (Law of total probability). Let $\left\{B_{i}\right\}_{i \in I}$ be a partition of Ω such that $\mathbb{P}\left(B_{i}\right)>0$ for all i. Then

$$
\mathbb{P}(A)=\sum_{i \in I} \mathbb{P}\left(A \mid B_{i}\right) \mathbb{P}\left(B_{i}\right) .
$$

Bayes' rule: When both $\mathbb{P}(A)>0$ and $\mathbb{P}(B)>0$:

$$
\mathbb{P}(B \mid A)=\mathbb{P}(A \mid B) \frac{\mathbb{P}(B)}{\mathbb{P}(A)}
$$

Corollary

$$
\underbrace{\frac{\mathbb{P}(B \mid A)}{\mathbb{P}\left(B^{c} \mid A\right)}}_{\text {posterior odds }}=\underbrace{\frac{\mathbb{P}(A \mid B)}{\mathbb{P}\left(A \mid B^{c}\right)}}_{\text {likelihood ratio }} \times \underbrace{\frac{\mathbb{P}(B)}{\mathbb{P}\left(B^{c}\right)}}_{\text {prior odds }} .
$$

[^3]Theorem 2.9 Let $\left\{B_{i}\right\}_{i \in I}$ be a partition of Ω such that $\mathbb{P}\left(B_{i}\right)>0$ for all i. Then for $\mathbb{P}(A)>0$

$$
\mathbb{P}\left(B_{i} \mid A\right)=\frac{\mathbb{P}\left(A \mid B_{i}\right) \mathbb{P}\left(B_{i}\right)}{\sum_{j \in I} \mathbb{P}\left(A \mid B_{j}\right) \mathbb{P}\left(B_{j}\right)}
$$

2.5. Conditional expectation for discrete random variables

Let X and Y be two discrete random variables. We define the conditional expectation of X given $Y=y$ as 6

$$
\mathbb{E}(X \mid Y=y):=\sum_{x} x \mathbb{P}(X=x \mid Y=y)
$$

Note that $\mathbb{E}(X \mid Y=y)$ is a function of y. Let us write this as

$$
\mathbb{E}(X \mid y)=h(y)
$$

The conditional expectation of X given Y is

$$
\mathbb{E}(X \mid Y):=h(Y)
$$

Observe that $\mathbb{E}(X \mid Y)$ is a random variable (in this case a discrete one).

Theorem (Iterated expectations)

$$
\mathbb{E}(\mathbb{E}(X \mid Y))=\mathbb{E} X
$$

Let X be a random variable which we want to predict using the random variable Y by some function of Y, say $g(Y)$. We then call $\mathbb{E}(X-g(Y))^{2}$ the (squared) prediction error.

Theorem 2.10 The minimizer over all functions $g: \mathbb{R} \rightarrow \mathbb{R}$ of $\mathbb{E}(X-g(Y))^{2}$ is given by $g(Y)=\mathbb{E}(X \mid Y)$.

2.6 Independence

Definition 2.6 The events A and B are called independent if

$$
\mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)
$$

The events $\left\{A_{j}\right\}_{j \in J}$ are called pairwise independent if

$$
\mathbb{P}\left(A_{i} \cap A_{j}\right)=\mathbb{P}\left(A_{i}\right) \mathbb{P}\left(A_{j}\right) \forall i \neq j
$$

[^4]They are called independent if for all $I \subset J$

$$
\mathbb{P}\left(\cap_{i \in I} A_{i}\right)=\prod_{i \in I} \mathbb{P}\left(A_{i}\right)
$$

The random variables X_{1}, \ldots, X_{n} are called independent if

$$
\mathbb{P}\left(X_{1}=x_{1}, \ldots, X_{n}=X_{n}\right)=\prod_{i=1}^{n} \mathbb{P}\left(X_{i}=x_{i}\right) \forall\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}
$$

Note: the events $\left\{A_{i}\right\}$ are independent iff their indicator functions $\left\{1_{A_{i}}\right\}$ are independent.

Lemma 2.4 Suppose X_{1}, \ldots, X_{n} are independent. Then

$$
\mathbb{E}\left(\prod_{i=1}^{n} X_{i}\right)=\prod_{i=1}^{n} \mathbb{E} X_{i} .
$$

2.6.2. The binomial distribution

Let X_{1}, \ldots, X_{n} be independent with

$$
\mathbb{P}\left(X_{i}=1\right)=1-\mathbb{P}\left(X_{i}=0\right)=p, i=1, \ldots, n,
$$

where $0<p<1$ is a parameter. Define

$$
S_{n}:=\sum_{i=1}^{n} X_{i} .
$$

Then

$$
\mathbb{P}\left(S_{n}=k\right)=\binom{n}{k} p^{k}(1-p)^{n-k}, k=0,1, \ldots, n
$$

In other words, S_{n} has the binomial distribution with parameters n and p ($\operatorname{Bin}(n, p)$-distribution).

Approximation of the binomial distribution by the normal distribution

The standard normal distribution We call

$$
\phi(x):=\frac{1}{\sqrt{2 \pi}} \exp \left[-\frac{x^{2}}{2}\right], x \in \mathbb{R}
$$

the density of the standard normal distribution. We call

$$
\Phi(x):=\int_{-\infty}^{x} \phi(u) d u, u \in \mathbb{R}
$$

the distribution function of the standard normal distribution.
Theorem 2.11 (de Moivre-Laplace). Let p be fixed and let $A>0$ be a fixed constant (i.e. both not depending on n). Suppose k grows with n and satisfies $|k-n p| \leq A \sqrt{n}$. Then for $n \rightarrow \infty$

$$
\mathbb{P}\left(S_{n}=k\right) \sim \frac{1}{\sigma} \phi\left(\frac{k-\mu}{\sigma}\right),
$$

where $\mu:=n p$ and $\sigma^{2}:=n p(1-p)$.

2.6.3. The Poisson distribution

Approximation of the binomial distribution by the Poisson distribution

Suppose X has the binomial distribution with parameters n and p where

$$
p=\frac{\lambda}{n}
$$

for some $\lambda>0$ not depending on n. Then for $n \rightarrow \infty$ and k fixed

$$
\mathbb{P}(X=k) \sim \mathrm{e}^{-\lambda} \frac{\lambda^{k}}{k!}
$$

In other words, X is then approximately Poisson distributed.

Some further properties of the Poisson distribution

Theorem 2.13 Let X_{1} and X_{2} be independent and suppose that for all $k \in$ $\{0, \ldots, n\}$ and all $n \in\{0,1,2, \ldots\}$

$$
\mathbb{P}\left(X_{1}=k \mid X_{1}+X_{2}=n\right)=\binom{n}{k} 2^{-n}
$$

(i.e., given the sum $X_{1}+X_{2}=n$, the random variable X_{1} has a $\operatorname{bin}\left(n, \frac{1}{2}\right)$ distribution). Then there is a $\lambda>0$ such that both X_{1} as well as X_{2} have a Poisson distribution with parameter λ.

Theorem 2.14 Let X_{1} and X_{2} be independent, and suppose ${ }^{7}$

$$
X_{1} \sim^{D} \operatorname{Poisson}\left(\lambda_{1}\right), X_{2} \sim^{D} \operatorname{Poisson}\left(\lambda_{2}\right) .
$$

Then

$$
X_{1}+X_{2} \sim^{D} \operatorname{Poisson}\left(\lambda_{1}+\lambda_{2}\right)
$$

[^5]
[^0]: ${ }^{1}$ Summary of Wahrscheinlichkeitsrechnung und Statistik, by H. Föllmer, H.-R. Künsch and additions by J. Teichmann, Feb. 2013

[^1]: ${ }^{2}$ For example: the probability that a nurse is a murderer is less that $.00001 \%$.
 ${ }^{3}$ For example: the probability of life on a planet is equal to the number of planets with life divided by the total number of planets.

[^2]: ${ }^{4}$ The notation $a \sim b$ means $a / b \rightarrow 1(n \rightarrow \infty)$.

[^3]: ${ }^{5}$ These are not the same functions as used in Definition 2.2.

[^4]: ${ }^{6}$ We consider only values of y with $\mathbb{P}(Y=y)>0$.

[^5]: ${ }^{7}$ The notation \sim^{D} means "has distribution"

