Summary of Probability and Statistics, Spring 2015^1

Sara van de Geer

Chapter 1 & 2

March 5, 2015

¹Summary of *Wahrscheinlichkeitsrechnung und Statistik*, by H. Föllmer, H.-R. Künsch and additions by J. Teichmann, Feb. 2013

Dictionary for Probability and Statistics, Chapter 1 & 2 English \rightarrow German

betting strategy: Spielsystem

conditional probability: bedingte Wahrscheinlichkeit

event: Ereigniss

expectation \mathbb{E} : Erwartungswert \mathbb{E}

matching problem: Garderobenproblem

outcome ω : Ergebniss ω

partition of Ω : Zerlegung von Ω

power set: Potenzmenge

probability measure \mathbb{P} : Wahrscheinlichkeitsmass \mathbb{P}

probability of success: Erfolgswahrscheinlichkeit

probability space $(\Omega, \mathcal{A}, \mathbb{P})$: Wahrscheinlichkeitsraum $(\Omega, \mathcal{A}, \mathbb{P})$

random variable X: Zufallsvariabele X

random walk: Irrfahrt

replacement: Zurücklegen

sample space Ω : Grundraum Ω

uniform distribution: *Gleichverteilung*

1 Chapter 1: Introduction

The sample space is denoted by Ω and subsets A of Ω are called *events*. In Chapter 2 we only consider countable Ω . In Chapter 3 we will introduce a collection \mathcal{A} of "measurable" subsets of Ω . When Ω is countable on can take \mathcal{A} as the collection of **all** subsets, the so-called *power set* of Ω . We need measure theory to deal with uncountable Ω .

A probability measure \mathbb{P} is a mapping

$$\mathbb{P}: \mathcal{A} \to [0,1]$$

which satisfies certain conditions: the axioms of Kolmogorov (see Chapter 3). For $A \in \mathcal{A}$ we say that $\mathbb{P}(A)$ is the probability of the event A.

There are several interpretations of probability. It can express one's belief in a certain event². One can have a frequentist interpretation: the probability of an event is the frequency of occurrences of this event if we repeat the experiment infinitely often. One may want to define the probability of A as the number of outcomes where A occurs divided by the total number of outcomes³ (this corresponds to the *uniform distribution* on all possible outcomes). One may also want to view probabilities (randomness) as complexity measures.

²For example: the probability that a nurse is a murderer is less that .00001 %.

³For example: the probability of life on a planet is equal to the number of planets with life divided by the total number of planets.

2 Chapter 2: Discrete probability space

2.1. Basics

Let Ω be countable and \mathcal{A} be the power set of Ω .

Definition Consider a given mapping

$$p: \Omega \to [0,1]$$

with $\sum_{\omega} p(\omega) = 1$. We define

$$\mathbb{P}(A) := \sum_{\omega \in A} p(\omega), \ A \in \mathcal{A}.$$

We call $(\Omega, \mathcal{A}, \mathbb{P})$ a discrete probability space.

Two important discrete distributions

Geometric distribution $\Omega := \{1, 2, \ldots\}, p(\omega) := (1-p)^{\omega-1}p$ with 0 a parameter.

Poisson distribution $\Omega = \{0, 1, 2, ...\}, p(\omega) := e^{-\lambda} \lambda^k / k!$ with $\lambda > 0$ a parameter. We call this the Poisson (λ) -distribution.

Random variables and expectation

Definition A random variable X is a mapping

$$X: \ \Omega \to \mathbb{R}.$$

We write

$$\mathbb{P}(X=x) := \mathbb{P}(\{\omega : X(\omega) = x\}).$$

Definition The *expectation* of a random variable X is

$$\mathbb{E}X := \sum_{x} x \mathbb{P}(X = x).$$

Lemma Suppose $X \in \{0, 1, 2, \ldots\}$. Then

$$\mathbb{E}X = \sum_{k=0}^{\infty} \mathbb{P}(X > k).$$

Linearity of the expectation Let X and Y be random variables and a and b be constants. Then

$$\mathbb{E}\left(aX+bY\right) = a\mathbb{E}X + b\mathbb{E}Y.$$

2.2. Urn models

Consider an urn with k white balls and N - k red balls. Define p := k/N. We sample at random n balls from the urn.

1) Sampling with replacement gives a *binomial distribution*:

$$\mathbb{P}(x \text{ white balls}) = \binom{n}{k} p^x (1-p)^{N-x}, \ x \in \{0, 1, \dots, n\}.$$

2) Sampling without replacement gives a hypergeometric distribution:

$$\mathbb{P}(x \text{ white balls}) = \frac{\binom{K}{x}\binom{N-K}{n-x}}{\binom{N}{n}}, x \in \{0, 1, \dots, n\} \cap [n+K-N, K].$$

Special case of binomial distribution: p = 1/2, n := 2n:

$$\mathbb{P}(X=x) = \binom{2n}{x} 2^{-2n}, \ x \in \{0, 1, \dots, 2n\}.$$

 So

$$\mathbb{P}(X=x) = \binom{2n}{n} 2^{-2n} \sim \frac{1}{\sqrt{n\pi}},$$

where the last result follows from Stirling's formula⁴.

2.3 Random walk

2.3.1. Definition of the random walk

Let $\Omega := \{ \omega = (x_1, \ldots, x_N) : x_i \in \{\pm 1\} \forall i \}$ and let \mathbb{P} be the uniform distribution:

$$\mathbb{P}(A) := \frac{|A|}{|\Omega|}, \ A \in \mathcal{A}.$$

Definition 2.1 Consider the random variables $X_i(\omega) := i$ -th component of $\omega \in \Omega$, i = 1, ..., N. Let $S_0 := 0$ and for n = 1, ..., N, $S_n := \sum_{i=1}^n X_i$. Then $\{S_n\}_{n=0}^N$ is called a *random walk* (starting at zero).

Theorem 2.1 We have

$$\mathbb{P}(S_n = 2k - n) = \binom{n}{k} 2^{-n}, \ k = 0, 1, \dots, n.$$

Corollary It holds that $\mathbb{P}(S_{2n} = 0) = \binom{2n}{n} 2^{-2n} \sim 1/\sqrt{n\pi},$ $\mathbb{P}(S_{2n-1} = 1) = \mathbb{P}(S_{2n} = 0).$

⁴The notation $a \sim b$ means $a/b \to 1$ $(n \to \infty)$.

2.3.2. First visit at level $a \neq o$ and first return to zero

Let $a \in \mathbb{Z}$ and

$$T_a := \min\{n \ge 1 : S_n = a\}.$$

If no such n exists we define $T_a := \infty$.

Result

$$\begin{split} & \mathbb{P}(T_a > n) \to 0 \text{ as } N \geq n \to \infty, \\ & \mathbb{E}T_a \to \infty \text{ as } N \geq n \to \infty \end{split}$$

To prove this result we first prove $\mathbb{P}(T_a > n) = \mathbb{P}(S_n \in (-a, a]), a \neq 0,$ $\mathbb{P}(T_0 > 2n) = \mathbb{P}(S_{2n} = 0).$

Here in turn, we apply the *reflection principle*.

2.3.3. The arcsin law for the last visit at zero

Let N := 2N and

$$L = \max\{0 \le n \le 2N : S_n = 0\}$$

Theorem 2.4 We have

$$\mathbb{P}(L=2n) = \binom{2n}{n} \binom{2(N-n)}{N-n} 2^{-2N}, \ n = 0, 1, \dots, N$$

Approximation For $N \to \infty$ and $n/N \to x \in [0, 1]$

$$\mathbb{P}(L=2n) \sim \frac{1}{N} \frac{1}{\pi \sqrt{x(1-x)}}.$$

This is called the arcsin law because

$$\int_0^x \frac{1}{\pi \sqrt{u(1-u)}} du = 2\arcsin(\sqrt{x}), \ 0 < x \le 1.$$

2.3.4. The impossibility of a winning betting strategy

Definition 2.2 An event $A \subset \Omega$ is called *observable* at time $n \ (0 \le n \le N)$ if its indicator function l_A can be written as

$$l_A(\omega) = \phi_n(X_1(\omega), \dots, X_n(\omega)), \ \forall \ \omega \in \Omega,$$

where $\phi_n : \{\pm 1\}^n \to \{0, 1\}$ is a given function. The collection \mathcal{A}_n is defined as all events A that are observable at time n.

Definition 2.3 The mapping

$$T: \ \Omega \to \{0, 1, \dots, N\}$$

is called a stopping time if $\{T = n\} \in \mathcal{A}_n, n \in \{0, \dots, N\}.$

We now consider random variables $\{V_k\}_{k=1}^N$.

Definition A random variable V_k is called *observable* at time k - 1 if

$$V_k(\omega) = \phi_{k-1}(X_1(\omega), \dots, X_{k-1}(\omega)), \ \forall \ \omega \in \Omega,$$

where $\phi_{k-1}: \{\pm 1\}^{k-1} \to \mathbb{R}$ is a given function⁵.

Definition A betting strategy is $\{(V \cdot S)_n := \sum_{k=1}^n V_k X_k : 1 \le n \le N\}.$

Impossibility of a winning betting strategy: For any stopping time T

$$\mathbf{E}(V \cdot S)_T = 0.$$

This result can be proved by writing

$$\tilde{V}_k := l\{T \ge k\} \in \mathcal{A}_{k-1}$$

i.e. \tilde{V}_k it is observable at time k-1 (k = 1, ..., N).

2.4. Conditional probability

Definition Let $\mathbb{P}(B) > 0$. The conditional probability of A given B is defined as $\mathbb{P}(A \cap B)$

$$\mathbb{P}(A|B) := \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

Definition A partition of Ω is a collection of mutually disjoint events $\{B_i\}_{i \in I}$ such that $\bigcup_{i \in I} B_i = \Omega$.

Theorem 2.7 (Law of total probability). Let $\{B_i\}_{i \in I}$ be a partition of Ω such that $\mathbb{P}(B_i) > 0$ for all *i*. Then

$$\mathbb{P}(A) = \sum_{i \in I} \mathbb{P}(A|B_i) \mathbb{P}(B_i).$$

Bayes' rule: When both $\mathbb{P}(A) > 0$ and $\mathbb{P}(B) > 0$:

$$\mathbb{P}(B|A) = \mathbb{P}(A|B) \frac{\mathbb{P}(B)}{\mathbb{P}(A)}.$$

Corollary

$$\frac{\mathbb{P}(B|A)}{\mathbb{P}(B^c|A)} = \underbrace{\mathbb{P}(A|B)}_{\mathbb{P}(A|B^c)} \times \underbrace{\mathbb{P}(B)}_{\mathbb{P}(B^c)} .$$

posterior odds likelihood ratio prior odds

⁵These are not the same functions as used in Definition 2.2.

Theorem 2.9 Let $\{B_i\}_{i \in I}$ be a partition of Ω such that $\mathbb{P}(B_i) > 0$ for all *i*. Then for $\mathbb{P}(A) > 0$

$$\mathbb{P}(B_i|A) = \frac{\mathbb{P}(A|B_i)\mathbb{P}(B_i)}{\sum_{j \in I} \mathbb{P}(A|B_j)\mathbb{P}(B_j)}$$

2.5. Conditional expectation for discrete random variables

Let X and Y be two discrete random variables. We define the conditional expectation of X given $Y = y \operatorname{as}^{6}$

$$\mathbb{E}(X|Y=y) := \sum_{x} x \mathbb{P}(X=x|Y=y).$$

Note that $\mathbb{E}(X|Y=y)$ is a function of y. Let us write this as

$$\mathbf{E}(X|y) = h(y).$$

The conditional expectation of X given Y is

$$\mathbb{E}(X|Y) := h(Y).$$

Observe that $\mathbb{E}(X|Y)$ is a random variable (in this case a discrete one).

Theorem (Iterated expectations)

$$\mathbb{E}\Big(\mathbb{E}(X|Y)\Big) = \mathbb{E}X.$$

Let X be a random variable which we want to predict using the random variable Y by some function of Y, say g(Y). We then call $\mathbb{E}(X - g(Y))^2$ the (squared) prediction error.

Theorem 2.10 The minimizer over all functions $g : \mathbb{R} \to \mathbb{R}$ of $\mathbb{E}(X - g(Y))^2$ is given by $g(Y) = \mathbb{E}(X|Y)$.

2.6 Independence

Definition 2.6 The events A and B are called *independent* if

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B).$$

The events $\{A_j\}_{j \in J}$ are called *pairwise independent* if

$$\mathbb{P}(A_i \cap A_j) = \mathbb{P}(A_i)\mathbb{P}(A_j) \ \forall \ i \neq j.$$

⁶We consider only values of y with $\mathbb{P}(Y = y) > 0$.

They are called *independent* if for all $I \subset J$

$$\mathbb{P}(\cap_{i\in I}A_i) = \prod_{i\in I}\mathbb{P}(A_i).$$

The random variables X_1, \ldots, X_n are called *independent* if

$$\mathbb{P}(X_1 = x_1, \dots, X_n = X_n) = \prod_{i=1}^n \mathbb{P}(X_i = x_i) \ \forall \ (x_1, \dots, x_n) \in \mathbb{R}^n.$$

Note: the events $\{A_i\}$ are independent iff their indicator functions $\{l_{A_i}\}$ are independent.

Lemma 2.4 Suppose X_1, \ldots, X_n are independent. Then

$$\mathbb{E}\left(\prod_{i=1}^{n} X_{i}\right) = \prod_{i=1}^{n} \mathbb{E} X_{i}.$$

2.6.2. The binomial distribution

Let X_1, \ldots, X_n be independent with

$$\mathbb{P}(X_i = 1) = 1 - \mathbb{P}(X_i = 0) = p, i = 1, \dots, n,$$

where 0 is a parameter. Define

$$S_n := \sum_{i=1}^n X_i.$$

Then

$$\mathbb{P}(S_n = k) = \binom{n}{k} p^k (1-p)^{n-k}, \ k = 0, 1, \dots, n.$$

In other words, S_n has the binomial distribution with parameters n and p (Bin(n, p)-distribution).

Approximation of the binomial distribution by the normal distribution

The standard normal distribution We call

$$\phi(x) := \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{x^2}{2}\right], \ x \in \mathbb{R}$$

the density of the standard normal distribution. We call

$$\Phi(x) := \int_{-\infty}^{x} \phi(u) du, \ u \in \mathbb{R}$$

the distribution function of the standard normal distribution.

Theorem 2.11 (de Moivre-Laplace). Let p be fixed and let A > 0 be a fixed constant (i.e. both not depending on n). Suppose k grows with n and satisfies $|k - np| \leq A\sqrt{n}$. Then for $n \to \infty$

$$\mathbb{P}(S_n = k) \sim \frac{1}{\sigma} \phi\left(\frac{k-\mu}{\sigma}\right),$$

where $\mu := np$ and $\sigma^2 := np(1-p)$.

2.6.3. The Poisson distribution

Approximation of the binomial distribution by the Poisson distribution

Suppose X has the binomial distribution with parameters n and p where

$$p = \frac{\lambda}{n}$$

for some $\lambda > 0$ not depending on n. Then for $n \to \infty$ and k fixed

$$\mathbb{P}(X=k) \sim \mathrm{e}^{-\lambda} \frac{\lambda^k}{k!}.$$

In other words, X is then approximately Poisson distributed.

Some further properties of the Poisson distribution

Theorem 2.13 Let X_1 and X_2 be independent and suppose that for all $k \in \{0, \ldots, n\}$ and all $n \in \{0, 1, 2, \ldots\}$

$$\mathbb{P}(X_1 = k | X_1 + X_2 = n) = \binom{n}{k} 2^{-n}$$

(i.e., given the sum $X_1 + X_2 = n$, the random variable X_1 has a $bin(n, \frac{1}{2})$ -distribution). Then there is a $\lambda > 0$ such that both X_1 as well as X_2 have a Poisson distribution with parameter λ .

Theorem 2.14 Let X_1 and X_2 be independent, and suppose⁷

$$X_1 \sim^D \text{Poisson}(\lambda_1), X_2 \sim^D \text{Poisson}(\lambda_2).$$

Then

$$X_1 + X_2 \sim^D \text{Poisson}(\lambda_1 + \lambda_2).$$

⁷The notation \sim^D means "has distribution"