
R. Hiptmair
L. Scarabosio
C. Urzua Torres

Spring Term 2015

Numerical Methods for Partial
Differential Equations

ETH Zürich
D-MATH

Homework Problem Sheet 10

Problem 10.1 Dirichlet BVP with Delta-Function Right-Hand Side (Core
problem)

One of the messages of [NPDE, Section 2.4.2] was that not all linear variational problems on
function spaces are well-posed, see [NPDE, Def. 2.4.12]. In this problem we will encounter
a specimen of an innocent looking ill-posed linear variational problem that was discussed in
detail in [NPDE, Ex. 2.4.18]. We are going to study how the ill-posed nature of the continuous
variational problem will be reflected by the behavior of Galerkin solutions. This will be done
empirically based on a C++ implementation using DUNE.

Template files for the new classes you will need to write are available in the lecture svn repository

assignments codes/assignment10/Problem1

The idea is that you extend your own code, reason why it does not contain the files you already
implemented in the previous assignments. Please do not forget to include them when you submit
your work. If your own implementation is still not working, you may use the classes provided in
assignments codes/solutions.

In this problem we consider the linear variational problem

u ∈ H1
0 (Ω) :

∫
Ω

gradu(x) · grad v(x) dx = v(0) ∀v ∈ H1
0 (Ω), (10.1.1)

posed on a polygon Ω (with 0 ∈ Ω) and attempt its numerical solution by means of a linear finite
element Galerkin discretization.

(10.1a) Describe a physical system for which (10.1.1) provides a model of certain aspects.
What is the meaning of u in this model.

HINT: Remember a particular model discussed in [NPDE, Chapter 2].

(10.1b) Which problem haunts the linear variational problem (10.1.1)? What can you say about
the existence of a minimizer of the associated quadratic functional?

HINT: Refresh yourself on the contents of [NPDE, Section 2.2.3]. Again study the beginning on
[NPDE, Section 2.3] and [NPDE, Ex. 2.4.18].

(10.1c) Let M be a triangular mesh of Ω. The Galerkin discretization of (10.1.1) based on
S0

1,0(M) leads to a discrete variational problem, cf. [NPDE, Section 3.2]. Explain why the as-
sociated discrete quadratic minimization problem (see [NPDE, Eq. (1.5.6)]) always has a unique
solution.

Problem Sheet 10 Page 1 Problem 10.1

(10.1d) LetMk be a sequence of triangular meshes, whereMk+1 is generated fromMk by
regular refinement of all triangles. Guess how the minimal value of the quadratic functional
associated with the variational problem (10.1.1) will behave as k →∞.

(10.1e) Implement the class LocalDelta which provides a method

t empla te <c l a s s Element>
void operator () (Element c o n s t& e , ElementVector & l o c a l) c o n s t ;

to compute the element vector associated to the specific right-hand side of (10.1.1). The method
should check whether 0 belongs to the given element and then compute the corresponding values
using linear Lagrangian finite elements.

HINT: Note this is similar to LocalFunction implemented in subproblem (7.4e).

(10.1f) We want to equip our finite element code with the capability to computer the L2(Ω)-
and H1(Ω)-seminorm of piecewise linear finite element functions given through their coefficient
vectors with respect to the nodal basis of S0

1 (M).

For this reason, now you are asked to complete the class Norms by implementing the methods
methods L2Norm, and H1sNorm, whose names already tell their function. They both take as
argument a coefficient vector Q.

t empla te <c l a s s DofHandler>
c l a s s Norms{
p u b l i c :

us ing c a l c t = double ;
us ing GridView = typename DofHandler : : GridView ;
enum{ world dim = GridView : : dimension } ;
us ing Matr ixType = Eigen : : SparseMatr ix<c a l c t , Eigen : : RowMajor>;
us ing Coordinate = Dune : : F ie ldVector<c a l c t , world dim >;

Norms (DofHandler c o n s t& dof hand le r)
: dofh (do f hand le r) , gv (dofh . gv) , N (dofh . s ize ()) {} ;

t empla te <c l a s s Vector>
double L2Norm (Vector c o n s t& Q) ;

t empla te <c l a s s Vector>
double H1sNorm(Vector c o n s t& Q) ;

p r i v a t e :
DofHandler dofh ;
unsigned N ;
GridView c o n s t& gv ;

} ;

HINT: Remember that both norms are the “energy norms” induced by suitable bilinear forms.
Thus the Galerkin matrices for these forms can be used to compute the (squares of the) norms.

(10.1g) Now we consider (10.1.1) on the unit disk Ω := {x ∈ R2 : ‖x‖ < 1}. An incomplete
file main.cc is supplied. The loading and refinement of the mesh, as well as the computation

Problem Sheet 10 Page 2 Problem 10.1

of the stiffness matrix is already implemented.

Extend this code to compute the load vector using the function you wrote in (10.1a), solve the
system and obtain the L2-norm and H1-seminorm of the solution. Finally plot the L2-norm and
H1-norm of the solutions vs. the number of degrees of freedom, and also output the solution for
the finest grid in Vtk-format.

(10.1h) Consider an abstract linear variational problem

u ∈ V0 : a(u, v) = `(v) ∀v ∈ V0, (10.1.2)

with s.p.d. (→ Def. [NPDE, Def. 2.2.35]) bilinear form a and a linear form ` that is continuous
in the energy norm in the sense of [NPDE, Eq. (2.2.48)].

Elaborate the relationship between the energy norm of the solution of (10.1.2) and the minimal
value of the associated quadratic functional according to [NPDE, § 2.4.2].

(10.1i) Explain your observations on the behavior of the H1-norm in subproblem (10.1g) in
light of the theoretical conclusions obtained in subproblems (10.1d) and (10.1g).

Problem 10.2 Debugging Finite Element Codes (Core problem)
[NPDE, Chapter 5] confronted you with theoretical results on the asymptotic convergence of finite
element Galerkin solutions for 2nd-order elliptic boundary value problems. On the one hand, these
estimates can be used to gauge the relative efficiency of different finite element approximations,
as was discussed in [NPDE, Section 5.3.5]. On the other hand, expected rates of convergence are
a fine probe for detecting errors in a finite element code. For instance, the observed convergence
to a known analytic solution should match the theoretical predictions, unless the code is flawed.
Another way of using the approximation results of [NPDE, Section 5.3.5] to identify a faulty
finite element implementation is demonstrated in this problem.

In detail these considerations are presented in [NPDE, Section 5.8]. This problem complements
this section of the lecture material, in particular [NPDE, § 5.8.9]. Study this paragraph again
before you continue.

The required files for this problem are available in the lecture svn repository

assignments codes/assignment10/Problem2

Three different local assemblers

LocalLaplaceQFEX, X ∈ {1, 2, 3}

purport to provide the Galerkin matrix and right-hand side vector for the finite element discretiza-
tion of the variational problem

u ∈ H1(Ω) : a(u, v) :=

∫
Ω

gradu · grad v dx = `(v) :=

∫
Ω

f(x)v(x) dx ∀v ∈ H1(Ω)

(10.2.1)

using quadratic Lagrangian finite elements (space S0
2 (M)) on a triagular meshM of some poly-

gon Ω ⊂ R2. The local assemblers provide the same basic methods as the LocalAssembler
object in [NPDE, Code 3.6.49]. The implied ordering of local shape functions is the same as in
[NPDE, Ex. 3.6.41], see also [NPDE, Code 3.6.42].

Problem Sheet 10 Page 3 Problem 10.2

(10.2a) Complete the class

t empla te <c l a s s DofHandler>
c l a s s In terpolateQFE {
p u b l i c :

us ing c a l c t = double ;
us ing GridView = typename DofHandler : : GridView ;
enum { K=2 } ;
enum { world dim = GridView : : dimension } ;

In terpolateQFE (DofHandler c o n s t& dof hand le r) :
dofh (do f hand le r) , gv (dofh . gv) {} ;

t empla te <c l a s s Vector , c l a s s Funct ion>
void operator () (Vector &Phi , Funct ion c o n s t& f) c o n s t ;

p r i v a t e :
DofHandler c o n s t& dofh ;
GridView c o n s t& gv ;

} ;

by writintg operator() that accepts a function f in procedural form, and fills Phi with the basis co-
efficients of the nodal interpolant I2u ∈ S0

2 (M). This particular piecewise quadratic interpolation
is presented in [NPDE, Ex. 3.5.3].

(10.2b) Determine a sharp bound T (hM) in the estimate

|a(u, u)− a(I2u, I2u)| ≤ CT (hM), (10.2.2)

where u : Ω 7→ R is supposed to be smooth and the unknown constant C > 0 may depend only
on Ω and the shape regularity measure ofM.

Use the following result, which is a generalization of [NPDE, Cor. 5.3.43] to quadratic Lagrangian
finite element spaces.

Theorem. Let Ω ⊂ Rd, d = 1, 2, 3, be a bounded polygonal/polyhedral domain equipped with a
simplicial meshM. Then the following interpolation error estimate holds for the nodal interpo-
lation operator I2 onto S0

2 (M)

‖u− I2u‖H1(Ω) ≤ Chmin{3,k}−1|u|Hk(Ω) ∀u ∈ Hk(Ω), k = 2, 3 ,

with a constant C > 0 depending only on k and the shape regularity measure ρM.

HINT: Recall from [NPDE, Section 5.1] the arguments that suggested that the energy norm pro-
vides a relevant norm for measuring the discretization error.

(10.2c) Write a method

t empla te <c l a s s LocalAssembler>
double test assembleQFE (DofHandler c o n s t & dofh ,

LocalAssembler lassemblr)

Problem Sheet 10 Page 4 Problem 10.2

that returns a(I2u, I2u) for u(x) = exp(‖x‖2) and the domain triangulated by the mesh described
by the Dune::GridView and the finite element space managed by DofHandler dofh. The argu-
ment lassemblr passes a local assembler for quadratic Lagrangian finite element with the calling
syntax of LocalLaplaceQFEX introduced above.

HINT: Use InterpolateQFE developed in (10.2a).

(10.2d) Complete the file main.cc so for each refinement level and for each of the local
assemblers LocalLaplaceQFEX, X ∈ {1, 2, 3}, it computes errX = |a(u, u)− a(I2u, I2u)| for the
function u(x) = exp(‖x‖2) from (10.2c). Finally plot errX against the number of elements in a
suitable scale.

HINT: Use the method test assembleQFE implemented in (10.2c).

Also, you may use |u|2H1(Ω) = 23.7608 for Ω = (0, 1)2.

(10.2e) Which implementations of the assembly routine are wrong, which are correct? Explain
your answer.

Problem 10.3 Crouzeix-Raviart Finite Elements
In this problem we come across an alien “non-conforming” piecewise linear finite element space.
It has no direct relevance for scalar second-order elliptic boundary value problems, but permits
us to practice notions and techniques for finite elements.

Let a triangular meshM of a 2D polygonal bounded domain Ω ⊂ R2 be given and write N =
{m1, . . . ,mN} for the set of the midpoints of its edges. A numbering of these points is assumed.

The so-called Crouzeix-Raviart finite element space CR(M) ⊂ L2(Ω) on the meshM is defined
as the span of the functions bjN , j = 1, . . . , N , which satisfy

biN |K ∈ P1(K) ∀K ∈M , biN(mj) =

{
1 , if i = j ,

0 else,
i, j ∈ {1, . . . , N} . (10.3.1)

(10.3a) Show that (10.3.1) provides a valid definition of the functions bjN .

(10.3b) Show that the set of functions {bjN : j = 1, . . . , N} is linearly independent.

(10.3c) Show that CR(M) 6⊂ H1(Ω).

(10.3d) Describe the support of a basis function biN .

(10.3e) We use the biN from (10.3.1) as global shape functions. Show that the local shape
functions for CR(M) on a triangle K can be expressed in terms of the barycentric coordinate
functions λi on K as follows:

bjN |K = 1− 2λopp(j) , j = 1 . . . , N , (10.3.2)

where opp(j) is the local index of the vertex opposite of mj on triangle K ∈M.

Problem Sheet 10 Page 5 Problem 10.3

(10.3f) Compute the element (Galerkin) matrix for the finite element space CR(M) and the
bilinear form

a(u, v) =

∫
Ω

uv dx , u, v ∈ L2(Ω) .

HINT: Use the integral formula for barycentric coordinate functions on a triangle K:∫
K

λα1
1 λ

α2
2 λ

α3
3 dx = |K| α1!α2!α3!2!

(α1 + α2 + α3 + 2)!
.

For the implementation of finite element methods based on Crouzeix-Raviart finite element spaces
in Dune we use the bjN from (10.3.1) as global shape functions. We number them taking into
account the numbering of edges in Dune, see [NPDE, § 3.6.21].

As usual, template files for the new classes you will need to write are available in the lecture svn
repository

assignments codes/assignment10/Problem3

The idea is that you extend your own code, reason why it does not contain the files you already
implemented in the previous assignments. Please do not forget to include them when you submit
your work. If your own implementation is still not working, you may use the classes provided in
assignments codes/solutions.

(10.3g) Implement the class CRDofHandler as you did for DofHandler but considering now the
edges (co-dimension 1) as degrees of freedom instead of the vertices (co-dimension 2).

HINT: This means you have to change operator() and size ()

(10.3h) We introduce the mesh-dependent bilinear form

aM(u, v) :=
∑
K∈M

∫
K

gradu · grad v dx . (10.3.3)

Derive a formula for the entries of the element matrices for the Galerkin discretization of aM
based on CR(M). The entries of the element matrix for triangle K should be expressed in terms
of the angles ωk, k = 1, 2, 3 of K, see [NPDE, Fig. 85]. Follow the convention that the i-th local
edge is opposite to the i-th local vertex, i = 1, 2, 3.

HINT: Use (10.3.2) and [NPDE, Eq. (3.3.21)].

(10.3i) Implement the class CRLocalLaplace which provides a method

t empla te <c l a s s Element , c l a s s Matr ix>
void operator () (Element c o n s t& e , Mat r i x & l o c a l) c o n s t ;

that computes the element matrix for aM using the Crouzeix-Raviart finite element space.

HINT: The local numbering scheme of the previous sub-problem does not apply, use the Dune
intrinsic numbering convention ([NPDE, Rem. 3.6.24]).

HINT: Recall the result of the subproblem (10.3h) and use AnalyticalLocalLaplace from subprob-
lem (7.4b) that computes the element matrices for aM for the piecewise linear Lagrangian finite
element spaces.

Problem Sheet 10 Page 6 Problem 10.3

(10.3j) Prove that the Galerkin matrices for aM and the finite element spaces CR(M) are
always positive semidefinite.

(10.3k) Assume that Ω is connected. Show that the kernel of the Galerkin matrix arising from
the discretization of aM based on the basis {bjN}Nj=1 of CR(M) from (10.3.1) is one-dimensional
and spanned by the vector with all entries = 1.

(10.3l) Implement a method

t empla te <c l a s s Funct ion>
double L2Norm (DofHandler c o n s t& dofh , Vector c o n s t& Q, Funct ion

c o n s t& u)

in main.cc that takes the DofHandler dofh for a particular GridView, a coefficient vector Q of
length N describing a function uN ∈ CR(M) (in Q), and a Function u in procedural form, repre-
senting u : Ω 7→ R (in u). The return value should provide an approximation for ‖u− uN‖L2(Ω)

computed by means of the local numerical quadrature offered by Dune with order 10.

HINT: Notice we want to compute the ‖u− uN‖L2(Ω), where u is a continuos function and uN a
finite element approximation function, i.e., uN(x) =

∑M
k=0Qjb

j
N(x). Therefore, in each element

you need to use the local basis functions to reconstruct u(x)N and then use quadrature integrate
|u(x)− uN(x)|2. You may follow the structure of the alternative solution for the H1 semi-norm
in (8.2k). If you do, don’t forget to consider the basis functions instead of the gradients.

(10.3m) Given a triangular meshM of Ω and a continuous function g : ∂Ω 7→ R, we consider
the following discrete variational problem: seek uN ∈ CR(M) such that

uN(m) = g(m) ∀m ∈ N∂ , aM(uN , vN) = 0 ∀vN ∈ CR0(M) . (10.3.4)

Here the following notations have been used:

• N∂ := {p ∈ N : p ∈ ∂Ω} (midpoints of edges on the boundary) ,

• CR0(M) := {v ∈ CR(M) : v(m) = 0 ∀m ∈ N∂} .

Implement a method void solve(DofHandler const & dof, Vector & uN) in main.cc which:

• Marks the boundary Dofs and set them inactive

• Computes the (global) Galerkin matrix for the bilinear form aM discretized by means of a
Crouzeix Raviart finite element space defined on a triangular mesh. The choice of global
shape functions and numbering schemes as introduced above still apply.

• Assembles the right hand side vector.

• Solves the system, i.e. computes the coefficient vector (w.r.t. the basis
{
bjN
}N
j=1

from
(10.3.1)) for the solution uN ∈ CR(M) of (10.3.4). The obtained coefficient vector for uN
should have N components, where N is the number of all edges in the meshM.

HINT: You may rely on the function CRLocalLaplace from subproblem (10.3i) and CRBoundaryDofs
in the repository.

Problem Sheet 10 Page 7 Problem 10.3

(10.3n) Somebody claims that the Crouzeix-Raviart finite element space and, in particular, the
method solve() from sub-problem (10.3m) can be used to solve the boundary value problem

−∆u = 0 in Ω, u = g on ∂Ω , (10.3.5)

though CR(M) 6⊂ H1(Ω)! Test this claim numerically for Ω =]0, 1[2 by using u(x) = log(
∥∥x +

(
1
0

)∥∥),
which satisfies ∆u = 0 on Ω, and computing ‖u− uN‖L2(Ω) for four different meshes arising
from global regular refinement of an initial coarse mesh.

To that end complete the implementation of main.cc so it otputs a vector of the values ‖u− uN‖L2(Ω)

and a vector of the number of elements for each mesh.

(10.3o) Based on the numerical results of the previous sub-problem, describe qualitatively and
quantitatively the observed convergence of ‖u− uN‖L2(Ω) as the mesh-width tends to 0.

HINT: The return values you should get can be loaded from the MATLAB data file l2err CR.dat.

Published on 29.04.2015.
To be submitted on 06.05.2015.

References

[NPDE] Lecture Slides for the course “Numerical Methods for Partial Differential Equa-
tions”.SVN revision # 75265.

[NCSE] Lecture Slides for the course “Numerical Methods for CSE”.

Last modified on April 30, 2015

Problem Sheet 10 Page 8 References

http://www.sam.math.ethz.ch/~hiptmair/tmp/NPDE/NPDE15.pdf
http://www.sam.math.ethz.ch/~hiptmair/tmp/NumCSE11_ext.pdf

	Problem Sheet 10
	10.1 Dirichlet BVP with Delta-Function Right-Hand Side (Core)
	10.2 Debugging Finite Element Codes (Core)
	10.3 Crouzeix-Raviart Finite Elements

