Homework Problem Sheet 11

Problem 11.1 An Impossible Interpolation Estimate (Core problem)

[NPDE, Thm. 5.3.37] gave us bounds for the $L^{2}(\Omega)$-norm and $H^{1}(\Omega)$-seminorm of the error of piecewise linear interpolation on a triangular mesh of a bounded polygonal domain $\Omega \subset \mathbb{R}^{2}$. These bounds invariably contained the $H^{2}(\Omega)$-norm of the interpolated function. Now, somebody claims to have found an analogous interpolation estimate of the form

$$
\begin{equation*}
\left\|u-l_{1} u\right\|_{L^{2}(\Omega)} \leq C h_{\mathcal{M}} \rho_{\mathcal{M}}|u|_{H^{1}(\Omega)} \quad \forall u \in H^{1}(\Omega) \tag{11.1.1}
\end{equation*}
$$

with some constant $C>0$.
(11.1a) Show that (11.1.1) implies

$$
\begin{equation*}
\left\|\mathrm{I}_{1} u\right\|_{L^{2}(\Omega)} \leq C\|u\|_{H^{1}(\Omega)} \quad \forall u \in H^{1}(\Omega), \tag{11.1.2}
\end{equation*}
$$

with a constant $C>0$ whose dependence of $h_{\mathcal{M}}$ and $\rho_{\mathcal{M}}$ should be made explicit.
Hint: First study [NPDE, Rem. 5.3.44].
Solution: Using the triangle inequality, we have:

$$
\begin{aligned}
\left\|I_{1} u\right\|_{L^{2}(\Omega)} & \leq\|u\|_{L^{2}(\Omega)}+\left\|u-I_{1} u\right\|_{L^{2}(\Omega)} \\
& \leq\|u\|_{L^{2}(\Omega)}+C_{1} h_{\mathcal{M}} \rho_{\mathcal{M}}|u|_{H^{1}(\Omega)}
\end{aligned}
$$

where we denoted by C_{1} the constant in (11.1.1). Then we obtain (11.1.2) with $C=1+$ $C_{1} h_{\mathcal{M}} \rho_{\mathcal{M}}>0$.
(11.1b) Argue why (11.1.2) cannot be true.

Hint: Remember [NPDE, Ex. 2.4.18], [NPDE, Cor. 2.4.24]. Note that we are in a 2D setting.
Solution: There is a function with finite H^{1}-norm which is unbounded in one point, see [NPDE, Ex. 2.4.18]. Hence the L^{2}-norm of its linear interpolant will be unbounded, if an interpolation node coincides with the location of the singularity.

Problem 11.2 Projection onto Constants (Core problem)

In [NPDE, Section 5.3.1] we derived L^{2} - and H^{1}-estimates for the error of piecewise linear interpolation on a grid, see [NPDE, Eq. (5.3.14)] and [NPDE, Eq. (5.3.16)]. The key tool was the integral representation formula [NPDE, Eq. (5.3.9)]. In this problem we practice these techniques for an even simpler projection operator.

Given a grid $\mathcal{M}:=\{] x_{j-1}, x_{j}[: 1 \leq j \leq M\}$ of $[a, b] \subset \mathbb{R}$ we define a projection onto the space $\mathcal{S}_{0}^{-1}(\mathcal{M})$ of piecewise constant discontinuous functions on \mathcal{M} according to

$$
\mathrm{I}_{0}:\left\{\begin{array}{cl}
L^{2}(] a, b[) & \mapsto \mathcal{S}_{0}^{-1}(\mathcal{M}) \tag{11.2.1}\\
u & \mapsto \sum_{j=1}^{M} \frac{1}{\left|x_{j}-x_{j-1}\right|} \int_{x_{j-1}}^{x_{j}} u(\xi) \mathrm{d} \xi \cdot \chi_{] x_{j-1}, x_{j}}[
\end{array}\right.
$$

where $\chi_{] x_{j-1}, x_{j}[}$ stands for the characteristic function of the interval $] x_{j-1}, x_{j}[$, that is

$$
\chi_{] x_{j-1}, x_{j}}(x)= \begin{cases}1 & , \text { if } x \in] x_{j-1}, x_{j}[\tag{11.2.2}\\ 0 & \text { else }\end{cases}
$$

We abbreviate $K:=] x_{j-1}, x_{j}[$ for some $j=1, \ldots, M$.
Remark: The linear projection I_{0} is an instance of an L^{2}-projection. Generically, given a (closed) subspace $V \subset L^{2}(\Omega)$, the associated L^{2}-projection operator $\mathrm{Q}_{V}: L^{2}(\Omega) \mapsto V$ is defined through as solution operator of the variational problem

$$
\mathrm{Q}_{V} u \in V: \quad\left\langle\mathrm{Q}_{V} u, v\right\rangle_{L^{2}(\Omega)}=\langle u, v\rangle_{L^{2}(\Omega)} \quad \forall v \in V
$$

(11.2a) Compute $\mathrm{I}_{0} u$ on $[0,1]$ for $u(x)=x$ and an equidistant mesh with meshwidth $h:=$ M^{-1}. Sketch the function $\mathrm{I}_{0} u$.

Solution: We apply the definition of I_{0} as from (11.2.1), and, since the interpolant is a staircase function, we obtain, by direct computation:

$$
\begin{aligned}
\mathrm{I}_{0} u & =\sum_{j=1}^{M} \frac{1}{\left|x_{j}-x_{j-1}\right|} \int_{x_{j-1}}^{x_{j}} u(\xi) \mathrm{d} \xi \cdot \chi_{] x_{j-1}, x_{j}[} \\
& =\sum_{j=1}^{M} \frac{1}{2} \frac{x_{j}^{2}-x_{j-1}^{2}}{\left|x_{j}-x_{j-1}\right|} \cdot \chi_{] x_{j-1}, x_{j}[} \\
& =\sum_{j=1}^{M} \frac{1}{2} \frac{\left(x_{j}+x_{j-1}\right)\left(x_{j}-x_{j-1}\right)}{\left|x_{j}-x_{j-1}\right|} \cdot \chi_{] x_{j-1}, x_{j}[} \\
& =\sum_{j=1}^{M} \frac{\left(x_{j}+x_{j-1}\right)}{2} \cdot \chi_{] x_{j-1}, x_{j}[}
\end{aligned}
$$

Hence, $\mathrm{I}_{0} u=\frac{\left(x_{j}+x_{j-1}\right)}{2}$ in $\left(x_{j-1}, x_{j}\right)$. The plot is given in Figure 11.1.
(11.2b) Derive the local integral representation formula for the projection error

$$
\begin{equation*}
\left(u-\mathrm{I}_{0} u\right)(x)=\frac{1}{\left|x_{j}-x_{j-1}\right|} \int_{x_{j-1}}^{x_{j}} \int_{y}^{x} u^{\prime}(\xi) \mathrm{d} \xi \mathrm{~d} y, \quad x_{j-1}<x<x_{j} \tag{11.2.3}
\end{equation*}
$$

Hint: Use the fundamental theorem of calculus [NPDE, Eq. (2.5.2)].
Solution: For $x_{j-1} \leq x \leq x_{j}$

$$
\left(u-\mathrm{I}_{0} u\right)(x)=u(x)-\mathrm{I}_{0} u(x)=u(x)-\frac{1}{\left|x_{j}-x_{j-1}\right|} \int_{x_{j-1}}^{x_{j}} u(y) \mathrm{d} y
$$

Figure 11.1: The function $u(x)=x$ and $\mathrm{I}_{0} u$

Note that,

$$
\int_{x_{j-1}}^{x_{j}} \int_{y}^{x} u^{\prime}(\xi) d \xi \mathrm{~d} y=\int_{x_{j-1}}^{x_{j}}(u(x)-u(y)) \mathrm{d} y=\left|x_{j}-x_{j-1}\right| u(x)-\int_{x_{j-1}}^{x_{j}} u(y) \mathrm{d} y
$$

Then, using the definition of I_{0} as from (11.2.1):

$$
\begin{aligned}
\left(u-\mathrm{I}_{0} u\right)(x) & =u(x)-\frac{1}{\left|x_{j}-x_{j-1}\right|} \int_{x_{j-1}}^{x_{j}} u(y) \mathrm{d} y \\
& =\frac{\left|x_{j}-x_{j-1}\right|}{\left|x_{j}-x_{j-1}\right|} u(x)-\frac{1}{\left|x_{j}-x_{j-1}\right|} \int_{x_{j-1}}^{x_{j}} u(y) \mathrm{d} y \\
& =\frac{1}{\left|x_{j}-x_{j-1}\right|} \int_{x_{j-1}}^{x_{j}} \int_{y}^{x} u^{\prime}(\xi) \mathrm{d} \xi \mathrm{~d} y
\end{aligned}
$$

(11.2c) Starting from (11.2.3) deduce the estimate

$$
\begin{equation*}
\left\|u-\mathrm{I}_{0} u\right\|_{L^{2}\left(\left|x_{j-1}, x_{j}\right|\right)}^{2} \leq\left|x_{j}-x_{j-1}\right|^{2}|u|_{\left.\left.H^{1}(] x_{j-1}, x_{j}\right]\right)}^{2} \tag{11.2.4}
\end{equation*}
$$

HINT: Apply the Cauchy-Schwarz inequality for integrals [NPDE, Eq. (2.3.15)] twice.

Solution:

$$
\begin{aligned}
\left\|u-\mathrm{I}_{0} u\right\|_{L^{2}\left(\mid x_{j-1}, x_{j} \mathrm{D}\right)}^{2} & =\int_{x_{j-1}}^{x_{j}}\left|\frac{1}{\left|x_{j}-x_{j-1}\right|} \int_{x_{j-1}}^{x_{j}} \int_{y}^{x} u^{\prime}(\xi) \mathrm{d} \xi \mathrm{~d} y\right|^{2} \mathrm{~d} x \\
& =\left(\frac{1}{\left|x_{j}-x_{j-1}\right|}\right)^{2} \int_{x_{j-1}}^{x_{j}}\left|\int_{x_{j-1}}^{x_{j}} \int_{y}^{x} 1 \cdot u^{\prime}(\xi) \mathrm{d} \xi \mathrm{~d} y\right|^{2} \mathrm{~d} x \\
& \leq\left(\frac{1}{\left|x_{j}-x_{j-1}\right|}\right)^{2} \int_{x_{j-1}}^{x_{j}}\left[\left(\int_{x_{j-1}}^{x_{j}} 1^{2} \mathrm{~d} y\right)\left(\int_{x_{j-1}}^{x_{j}}\left|\int_{y}^{x} u^{\prime}(\xi) \mathrm{d} \xi\right|^{2} \mathrm{~d} y\right)\right] \mathrm{d} x \\
& =\left(\frac{1}{\left|x_{j}-x_{j-1}\right|}\right)^{2} \int_{x_{j-1}}^{x_{j}}\left(x_{j}-x_{j-1}\right)\left(\int_{x_{j-1}}^{x_{j}}\left|\int_{y}^{x} u^{\prime}(\xi) \mathrm{d} \xi\right|^{2} \mathrm{~d} y\right) \mathrm{d} x \\
& =\frac{1}{\left|x_{j}-x_{j-1}\right|} \int_{x_{j-1}}^{x_{j}}\left(\int_{x_{j-1}}^{x_{j}}\left|\int_{y}^{x} 1 \cdot u^{\prime}(\xi) \mathrm{d} \xi\right|^{2} \mathrm{~d} y\right) \mathrm{d} x \\
& \leq \frac{1}{\left|x_{j}-x_{j-1}\right|} \int_{x_{j-1}}^{x_{j}}\left(\int_{x_{j-1}}^{x_{j}}\left[\left(\int_{x_{j-1}}^{x_{j}} 1^{2} \mathrm{~d} \xi\right)\left(\int_{x_{j-1}}^{x_{j}}\left|u^{\prime}(\xi)\right|^{2} \mathrm{~d} \xi\right)\right] \mathrm{d} y\right) \mathrm{d} x \\
& =\int_{x_{j-1}}^{x_{j}} \int_{x_{j-1}}^{x_{j}}|u|_{\left.H^{1}(] x_{j-1}, x_{j} \mid\right)}^{2} \mathrm{~d} y \mathrm{~d} x \\
& =\left|x_{j}-x_{j-1}\right|^{2}|u|_{\left.H^{1}(] x_{j-1}, x_{j} \mid\right)}^{2}
\end{aligned}
$$

where for the last inequality, while applying Cauchy-Schwarz, we also used the positivity of the integrand and the monotonicity of the interval to have $\int_{y}^{x}\left|u^{\prime}(\xi)\right|^{2} \mathrm{~d} \xi \leq \int_{x_{j-1}}^{x_{j}}\left|u^{\prime}(\xi)\right|^{2} \mathrm{~d} \xi=$ $|u|_{H^{1}\left(\left[x_{j-1}, x_{j}\right)\right.}^{2}$.
(11.2d) Based on (11.2.4) derive the global projection error estimate

$$
\begin{equation*}
\left\|u-\mathrm{I}_{0} u\right\|_{L^{2}(J a, b \mid)} \leq h_{\mathcal{M}}|u|_{H^{1}(J a, b \mid]}, \tag{11.2.5}
\end{equation*}
$$

where $h_{\mathcal{M}}$ is the meshwidth of \mathcal{M}.

Solution:

$$
\begin{aligned}
\left\|u-\mathrm{I}_{0} u\right\|_{\left.\left.L^{2}(] a, b\right]\right)}^{2} & =\sum_{\mathcal{M}}\left\|u-\mathrm{I}_{0} u\right\|_{\left.L^{2}\left(\mid x_{j-1}, x_{j}\right]\right)}^{2} \\
& \leq \sum_{j=1}^{M}\left|x_{j}-x_{j-1}\right|^{2}|u|_{H^{1}\left(\mid x_{j-1}, x_{j}[)\right.}^{2} \\
& \leq h_{\mathcal{M}}^{2}|u|_{H^{1}(] a, b[)}^{2}
\end{aligned}
$$

Hence

$$
\left\|u-\mathrm{I}_{0} u\right\|_{L^{2}(J a, b \mid)} \leq h_{\mathcal{M}}|u|_{H^{1}(|a, b|)} .
$$

Problem 11.3 Convergence of Finite Element Solutions (Core problem)

A student is testing his implementation of a finite element method. On the square domain $\Omega=$ $(0,1)^{2}$ he considers the $2^{\text {nd }}$-order elliptic boundary value problem

$$
\begin{align*}
-\Delta u & =1 & & \text { in } \Omega, \\
u & =\frac{1}{4}\left(1-\|\boldsymbol{x}\|^{2}\right) & & \text { on } \partial \Omega . \tag{11.3.1}
\end{align*}
$$

He computes an approximate solutions u_{N} by means of a finite element Galerkin method using linear (piecewise first order polynomials) and quadratic (piecewise second order polynomials) finite elements, denoted by LFE and QFE respectively, on a sequence of triangular meshes \mathcal{M}.
The following table lists the measured $H^{1}(\Omega)$-seminorm of the discretization error as a function of the meshwidth h.

h	0.70	0.35	0.17	0.088	0.044	0.022	0.011
LFE	0.10	0.051	0.025	0.012	0.0064	0.0032	0.0008
QFE	$1.75 \cdot 10^{-16}$	$1.24 \cdot 10^{-15}$	$5.71 \cdot 10^{-15}$	$2.29 \cdot 10^{-14}$	$8.91 \cdot 10^{-14}$	$3.53 \cdot 10^{-13}$	$1.41 \cdot 10^{-12}$

(11.3a) Show that $u(\boldsymbol{x})=\frac{1}{4}\left(1-\|\boldsymbol{x}\|^{2}\right)$ is the exact solution of (11.3.1)

Solution: We have

$$
-\Delta u=-\frac{\mathrm{d}^{2} u}{\mathrm{~d} x_{1}{ }^{2}}-\frac{\mathrm{d}^{2} u}{\mathrm{~d} x_{2}{ }^{2}}=\frac{1}{2}+\frac{1}{2}=1 .
$$

This solution also (obviously) matches the Dirichlet boundary data.
(11.3b) What kind of convergence (qualitative and quantitative) for linear Lagragian finite elements can be inferred from the error table?

Solution: When creating a log-log plot of the error norm versus the meshwidth $h_{\mathcal{M}}$ the data points are approximately located on a straight line. This hints at algebraic convergence. The rate is given by the slope of the line and can be read off the plot as ≈ 1. You may also use polyfit to determine the rate by linear regression as done in the following MATLAB code.

Listing 11.1: Convergence plot

```
data = load('cvgtab.mat');
p = polyfit(log(data.h), log(data.H1S_Error_LFE), 1);
p(1)
```

Alternatively, you may have noticed that the values of $h_{\mathcal{M}}$ roughly shrink by a factor of two when advancing to the next finer mesh. The same is true of the error. Hence the quotients

$$
\text { error : } h_{\mathcal{M}}
$$

are about constant, which, again, confirms first order convergence.
(11.3c) Explain the striking difference between the behavior of the discretization error for linear and quadratic Lagrangian finite elements.

Solution: For $p=2$ the errors are around machine precision, because the exact solution u is a quadratic polynomial and belongs to the finite element space $\mathcal{S}_{2}^{0}(\mathcal{M})$. The errors reflect nothing more than numerical roundoff. For $p=1$ no the solution has to be approximated and such "free lunch" exists.

Problem 11.4 Localized Interpolation Error Estimates

There is a more refined way than that of [NPDE, Thm. 5.3.37] to state interpolation error estimates. It relies on the piecewise constant meshwidth function

$$
\begin{equation*}
\hbar(\boldsymbol{x})=h_{K} \quad \text { if } \quad \boldsymbol{x} \in K, \tag{11.4.1}
\end{equation*}
$$

where K is a cell of a triangular mesh \mathcal{M} of a domain $\Omega \subset \mathbb{R}^{2}$.
Based on [NPDE, Lemma 5.3.34] derive the estimate

$$
\begin{equation*}
\left\|\hbar^{-2}\left(u-l_{1} u\right)\right\|_{L^{2}(\Omega)} \leq C|u|_{H^{2}(\Omega)} \quad \forall u \in H^{2}(\Omega) \tag{11.4.2}
\end{equation*}
$$

What is a concrete value for the constant C ?
Solution: Using [NPDE, Lemma 5.3.34]:

$$
\left\|\hbar^{-2}\left(u-\mathrm{I}_{1} u\right)\right\|_{L^{2}(K)}^{2} \leq \frac{3}{8} h_{K}^{4}\left|\hbar^{-2} u\right|_{H^{2}(K)}^{2}=\frac{3}{8}|u|_{H^{2}(K)}^{2} .
$$

Then, summing over all the triangles:

$$
\begin{aligned}
\left\|\hbar^{-2}\left(u-l_{1} u\right)\right\|_{L^{2}(\Omega)}^{2} & \leq \sum_{K \in \mathcal{M}} \frac{3}{8}|u|_{H^{2}(K)}^{2}=\frac{3}{8}|u|_{H^{2}(\Omega)}^{2} \\
\left\|\hbar^{-2}\left(u-l_{1} u\right)\right\|_{L^{2}(\Omega)} & \leq \sqrt{\frac{3}{8}}|u|_{H^{2}(\Omega)} .
\end{aligned}
$$

Problem 11.5 Shape Regularity and Angle Condition

When deriving interpolation error estimates for linear interpolation on triangular meshes in [NPDE, Section 5.3.2], it was convenient to introduce the concept of a shape regularity measure ρ_{K} for a triangle K, see [NPDE, Def. 5.3.36]. The intuition is that in 2D the shape regularity measure indicates the degree to which a triangle is distorted. This distortion was linked to the angles in [NPDE, Fig. 198], [NPDE, Fig. 199], and [NPDE, Fig. 200]. This link will be explored in this problem.
Bound the smallest angle of a triangle K by an expression involving only ρ_{K}.
HINT: From secondary school recall the formula $|K|=\frac{1}{2} a b \sin (\gamma)$, where γ is the angle enclosed by the sides with lengths a, b.

Solution: Assume, $\gamma \leq \beta \leq \alpha$ are related with edges $c<b<a$, respectively (refer to Figure 11.2). Then, we know by the triangle inequality that $b+c>a$, and so $2 b>a$. Then,

$$
\sin \gamma=\frac{2}{a b} \cdot \frac{1}{2} a b \sin \gamma<\frac{4}{a^{2}}|K|=\frac{4}{\rho_{K}} .
$$

Figure 11.2: A Triangle

Published on May 6.
To be submitted on May 13.

References

[NPDE] Lecture Slides for the course "Numerical Methods for Partial Differential Equations".SVN revision \# 76119.
[NCSE] Lecture Slides for the course "Numerical Methods for CSE".

Last modified on May 18, 2015

