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Problem 11.1 An Impossible Interpolation Estimate (Core problem)

[NPDE, Thm. 5.3.37] gave us bounds for the L2(Ω)-norm and H1(Ω)-seminorm of the error

of piecewise linear interpolation on a triangular mesh of a bounded polygonal domain Ω ⊂ R
2.

These bounds invariably contained the H2(Ω)-norm of the interpolated function. Now, somebody

claims to have found an analogous interpolation estimate of the form

‖u− I1u‖L2(Ω) ≤ ChMρM|u|H1(Ω) ∀u ∈ H1(Ω), (11.1.1)

with some constant C > 0.

(11.1a) Show that (11.1.1) implies

‖I1u‖L2(Ω) ≤ C‖u‖H1(Ω) ∀u ∈ H1(Ω), (11.1.2)

with a constant C > 0 whose dependence of hM and ρM should be made explicit.

HINT: First study [NPDE, Rem. 5.3.44].

Solution: Using the triangle inequality, we have:

‖I1u‖L2(Ω) ≤ ‖u‖
L2(Ω) + ‖u− I1u‖L2(Ω)

≤ ‖u‖L2(Ω) + C1hMρM|u|H1(Ω),

where we denoted by C1 the constant in (11.1.1). Then we obtain (11.1.2) with C = 1 +
C1hMρM > 0.

(11.1b) Argue why (11.1.2) cannot be true.

HINT: Remember [NPDE, Ex. 2.4.18], [NPDE, Cor. 2.4.24]. Note that we are in a 2D setting.

Solution: There is a function with finite H1-norm which is unbounded in one point, see [NPDE,

Ex. 2.4.18]. Hence the L2-norm of its linear interpolant will be unbounded, if an interpolation

node coincides with the location of the singularity.

Problem 11.2 Projection onto Constants (Core problem)

In [NPDE, Section 5.3.1] we derived L2- and H1-estimates for the error of piecewise linear

interpolation on a grid, see [NPDE, Eq. (5.3.14)] and [NPDE, Eq. (5.3.16)]. The key tool was the

integral representation formula [NPDE, Eq. (5.3.9)]. In this problem we practice these techniques

for an even simpler projection operator.
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Given a grid M := {]xj−1, xj [: 1 ≤ j ≤ M} of [a, b] ⊂ R we define a projection onto the space

S−1
0 (M) of piecewise constant discontinuous functions on M according to

I0 :







L2(]a, b[) 7→ S−1
0 (M)

u 7→
M
∑

j=1

1
|xj−xj−1|

∫ xj

xj−1

u(ξ) dξ · χ]xj−1,xj [,
(11.2.1)

where χ]xj−1,xj [ stands for the characteristic function of the interval ]xj−1, xj [, that is

χ]xj−1,xj [(x) =

{

1 , if x ∈]xj−1, xj[,

0 else.
(11.2.2)

We abbreviate K :=]xj−1, xj[ for some j = 1, . . . ,M .

Remark: The linear projection I0 is an instance of an L2-projection. Generically, given a (closed)

subspace V ⊂ L2(Ω), the associated L2-projection operator QV : L2(Ω) 7→ V is defined through

as solution operator of the variational problem

QV u ∈ V : 〈QV u, v〉L2(Ω) = 〈u, v〉L2(Ω) ∀v ∈ V .

(11.2a) Compute I0u on [0, 1] for u(x) = x and an equidistant mesh with meshwidth h :=
M−1. Sketch the function I0u.

Solution: We apply the definition of I0 as from (11.2.1), and, since the interpolant is a staircase

function, we obtain, by direct computation:

I0u =

M
∑

j=1

1

|xj − xj−1|

∫ xj

xj−1

u(ξ) dξ · χ]xj−1,xj [

=
M
∑

j=1

1

2

x2
j − x2

j−1

|xj − xj−1|
· χ]xj−1,xj [

=
M
∑

j=1

1

2

(xj + xj−1)(xj − xj−1)

|xj − xj−1|
· χ]xj−1,xj [

=

M
∑

j=1

(xj + xj−1)

2
· χ]xj−1,xj [

Hence, I0u =
(xj+xj−1)

2
in (xj−1, xj). The plot is given in Figure 11.1.

(11.2b) Derive the local integral representation formula for the projection error

(u− I0u)(x) =
1

|xj − xj−1|

∫ xj

xj−1

∫ x

y

u′(ξ) dξ dy, xj−1 < x < xj . (11.2.3)

HINT: Use the fundamental theorem of calculus [NPDE, Eq. (2.5.2)].

Solution: For xj−1 ≤ x ≤ xj

(u− I0u)(x) = u(x)− I0u(x) = u(x)−
1

|xj − xj−1|

∫ xj

xj−1

u(y) dy
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Figure 11.1: The function u(x) = x and I0u

Note that,

∫ xj

xj−1

∫ x

y

u′(ξ)dξ dy =

∫ xj

xj−1

(u(x)− u(y)) dy = |xj − xj−1|u(x)−

∫ xj

xj−1

u(y) dy

Then, using the definition of I0 as from (11.2.1):

(u− I0u)(x) = u(x)−
1

|xj − xj−1|

∫ xj

xj−1

u(y) dy

=
|xj − xj−1|

|xj − xj−1|
u(x)−

1

|xj − xj−1|

∫ xj

xj−1

u(y) dy

=
1

|xj − xj−1|

∫ xj

xj−1

∫ x

y

u′(ξ) dξ dy

(11.2c) Starting from (11.2.3) deduce the estimate

‖u− I0u‖
2
L2(]xj−1,xj [)

≤ |xj − xj−1|
2|u|2H1(]xj−1,xj [)

. (11.2.4)

HINT: Apply the Cauchy-Schwarz inequality for integrals [NPDE, Eq. (2.3.15)] twice.
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Solution:

‖u− I0u‖
2
L2(]xj−1,xj [)

=

∫ xj

xj−1

∣

∣

∣

∣

1

|xj − xj−1|

∫ xj

xj−1

∫ x

y

u′(ξ) dξ dy

∣

∣

∣

∣

2

dx

=

(

1

|xj − xj−1|

)2 ∫ xj

xj−1

∣

∣

∣

∣

∫ xj

xj−1

∫ x

y

1 · u′(ξ) dξ dy

∣

∣

∣

∣

2

dx

≤

(

1

|xj − xj−1|

)2 ∫ xj

xj−1

[(
∫ xj

xj−1

12 dy

)(
∫ xj

xj−1

∣

∣

∣

∣

∫ x

y

u′(ξ) dξ

∣

∣

∣

∣

2

dy

)]

dx

=

(

1

|xj − xj−1|

)2 ∫ xj

xj−1

(xj − xj−1)

(
∫ xj

xj−1

∣

∣

∣

∣

∫ x

y

u′(ξ) dξ

∣

∣

∣

∣

2

dy

)

dx

=
1

|xj − xj−1|

∫ xj

xj−1

(

∫ xj

xj−1

∣

∣

∣

∣

∫ x

y

1 · u′(ξ) dξ

∣

∣

∣

∣

2

dy

)

dx

≤
1

|xj − xj−1|

∫ xj

xj−1

(
∫ xj

xj−1

[(
∫ xj

xj−1

12 dξ

)(
∫ xj

xj−1

|u′(ξ)|2 dξ

)]

dy

)

dx

=

∫ xj

xj−1

∫ xj

xj−1

|u|2H1(]xj−1,xj [)
dy dx

= |xj − xj−1|
2|u|2H1(]xj−1,xj[)

,

where for the last inequality, while applying Cauchy-Schwarz, we also used the positivity of

the integrand and the monotonicity of the interval to have
∫ x

y
|u′(ξ)|2 dξ ≤

∫ xj

xj−1

|u′(ξ)|2 dξ =

|u|2H1(]xj−1,xj [)
.

(11.2d) Based on (11.2.4) derive the global projection error estimate

‖u− I0u‖L2(]a,b[) ≤ hM|u|H1(]a,b[), (11.2.5)

where hM is the meshwidth of M.

Solution:

‖u− I0u‖
2
L2(]a,b[) =

∑

M

‖u− I0u‖
2
L2(]xj−1,xj[)

≤

M
∑

j=1

|xj − xj−1|
2|u|2H1(]xj−1,xj [)

≤ h2
M|u|2H1(]a,b[)

Hence

‖u− I0u‖L2(]a,b[) ≤ hM|u|H1(]a,b[).
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Problem 11.3 Convergence of Finite Element Solutions (Core problem)

A student is testing his implementation of a finite element method. On the square domain Ω =
(0, 1)2 he considers the 2nd-order elliptic boundary value problem

−∆u = 1 in Ω,

u =
1

4

(

1− ‖x‖2
)

on ∂Ω.
(11.3.1)

He computes an approximate solutions uN by means of a finite element Galerkin method using

linear (piecewise first order polynomials) and quadratic (piecewise second order polynomials)

finite elements, denoted by LFE and QFE respectively, on a sequence of triangular meshes M.

The following table lists the measured H1(Ω)-seminorm of the discretization error as a function

of the meshwidth h.

h 0.70 0.35 0.17 0.088 0.044 0.022 0.011

LFE 0.10 0.051 0.025 0.012 0.0064 0.0032 0.0008

QFE 1.75·10−16 1.24·10−15 5.71·10−15 2.29·10−14 8.91·10−14 3.53·10−13 1.41·10−12

(11.3a) Show that u(x) = 1
4
(1− ‖x‖2) is the exact solution of (11.3.1)

Solution: We have

−∆u = −
d2u

dx1
2
−

d2u

dx2
2
=

1

2
+

1

2
= 1.

This solution also (obviously) matches the Dirichlet boundary data.

(11.3b) What kind of convergence (qualitative and quantitative) for linear Lagragian finite

elements can be inferred from the error table?

Solution: When creating a log-log plot of the error norm versus the meshwidth hM the data

points are approximately located on a straight line. This hints at algebraic convergence. The rate

is given by the slope of the line and can be read off the plot as ≈ 1. You may also use polyfit

to determine the rate by linear regression as done in the following MATLAB code.

Listing 11.1: Convergence plot

1 data = load(’cvgtab.mat’);

2

3 p = p o l y f i t( l o g(data.h), l o g(data.H1S_Error_LFE), 1);

4 p(1)

Alternatively, you may have noticed that the values of hM roughly shrink by a factor of two when

advancing to the next finer mesh. The same is true of the error. Hence the quotients

error : hM

are about constant, which, again, confirms first order convergence.
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(11.3c) Explain the striking difference between the behavior of the discretization error for

linear and quadratic Lagrangian finite elements.

Solution: For p = 2 the errors are around machine precision, because the exact solution u is a

quadratic polynomial and belongs to the finite element space S0
2 (M). The errors reflect nothing

more than numerical roundoff. For p = 1 no the solution has to be approximated and such “free

lunch” exists.

Problem 11.4 Localized Interpolation Error Estimates

There is a more refined way than that of [NPDE, Thm. 5.3.37] to state interpolation error esti-

mates. It relies on the piecewise constant meshwidth function

~(x) = hK if x ∈ K, (11.4.1)

where K is a cell of a triangular mesh M of a domain Ω ⊂ R
2.

Based on [NPDE, Lemma 5.3.34] derive the estimate
∥

∥~
−2(u− I1u)

∥

∥

L2(Ω)
≤ C|u|H2(Ω) ∀u ∈ H2(Ω), (11.4.2)

What is a concrete value for the constant C?

Solution: Using [NPDE, Lemma 5.3.34]:

∥

∥~
−2(u− I1u)

∥

∥

2

L2(K)
≤

3

8
h4
K

∣

∣~
−2u
∣

∣

2

H2(K)
=

3

8
|u|2H2(K).

Then, summing over all the triangles:

∥

∥~
−2(u− I1u)

∥

∥

2

L2(Ω)
≤
∑

K∈M

3

8
|u|2H2(K) =

3

8
|u|2H2(Ω)

∥

∥~
−2(u− I1u)

∥

∥

L2(Ω)
≤

√

3

8
|u|H2(Ω).

Problem 11.5 Shape Regularity and Angle Condition

When deriving interpolation error estimates for linear interpolation on triangular meshes in [NPDE,

Section 5.3.2], it was convenient to introduce the concept of a shape regularity measure ρK for

a triangle K, see [NPDE, Def. 5.3.36]. The intuition is that in 2D the shape regularity measure

indicates the degree to which a triangle is distorted. This distortion was linked to the angles in

[NPDE, Fig. 198], [NPDE, Fig. 199], and [NPDE, Fig. 200]. This link will be explored in this

problem.

Bound the smallest angle of a triangle K by an expression involving only ρK .

HINT: From secondary school recall the formula |K| = 1
2
ab sin(γ), where γ is the angle enclosed

by the sides with lengths a, b.

Solution: Assume, γ ≤ β ≤ α are related with edges c < b < a , respectively (refer to

Figure 11.2). Then, we know by the triangle inequality that b+ c > a, and so 2b > a. Then,

sin γ =
2

ab
·
1

2
ab sin γ <

4

a2
|K| =

4

ρK
.
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Figure 11.2: A Triangle
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