
R. Hiptmair
L. Scarabosio
C. Urzua Torres

Spring Term 2015

Numerical Methods for Partial
Differential Equations

ETH Zürich
D-MATH

Homework Problem Sheet 12

Problem 12.1 Radau-3 Timestepping (Core problem)
This short problem studies the full discretization of a linear second-order parabolic initial-boundary
value problem as discussed in [NPDE, Section 6.1.1]. The focus will be on the implementation
of higher-order implicit Runge-Kutta timestepping.

We consider the parabolic IBVP with homogeneous Dirichlet boundary conditions and zero initial
conditions

u̇−∆u = f(x, t) in Ω× (0, 1),

u = 0 on ∂Ω× (0, 1),

u = 0 on Ω× {0},
(12.1.1)

where the spatial domain Ω is the unit disk

Ω := {x ∈ R2, ∥x∥ < 1}.

The time-dependent source function is given by

f(x, t) =

{
1 , if

∥∥x− 1
2

(
cosπt
sinπt

)∥∥ < 1
2
,

0 elsewhere.

We pursue the method of lines approach, see [NPDE, Section 6.1.4]. Spatial discretization relies
on linear Lagrangian finite elements on a triangular mesh M, that is, V0,N = S0

1,0(M), using a
polygonal approximation of ∂Ω.

When higher order timestepping schemes are desired for the initial value problem arising from the
method of lines approach, L(π)-stable implicit Runge-Kutta methods (→ [NPDE, Def. 6.1.39])
are the methods of choice. One example is the Radau-3 scheme, a 2-stage implicit Runge-Kutta
method, whose description via a Butcher scheme is given in [NPDE, Eq. (6.1.86)].

(12.1a) Devise and implement (in C++ or MATLAB) a numerical experiment for determining
the order of (algebraic) convergence of the Radau-3 method, when applied to the initial value
problem for a scalar ODE ẏ = −y, y(0) = 1, on [0, 2]. Which order do you find?

HINT: [NPDE, § 1.6.26] discussed “measurements” for rates of convergence. Measure the error
maxk |y(tk)− y(k)| for various timestep sizes τ > 0 (equidistant timesteps).

Problem Sheet 12 Page 1 Problem 12.1

(12.1b) The application of s-stage Runge-Kutta single step methods according to [NPDE,
Def. 6.1.39] entails the computation of s increments in each timestep. For the linear ordinary
differential equation [NPDE, Eq. (6.1.29)] arising from the method of lines approach to a lin-
ear parabolic evolution problem the increments can be obtained by solving a linear system of
equations, see [NPDE, § 6.1.42] and [NPDE, Eq. (6.1.43)].

Describe this linear system of equations (in block form) for the RADAU-3 method for (12.1.1)
using the notations A and M for the N × N finite element Galerkin matrices associated with
the bilinear form for −∆ and the L2(Ω)-inner product, respectively. Write φ⃗(t) for the time-
dependent right hand side vector obtained by Galerkin discretization of the source term.

(12.1c) Complete the class Radau3 provided in the svn repository, by implementing the
method

void computeSystemMatrix (Mat r i x & MK, Mat r i x & A, double dt)

which takes as argument the timestep dt, computes the required triplets, and finally fills the coef-
ficient matrix MK∈ R2N,2N for the linear system supplying the increments, see subproblem (12.1b).
The argument A returns the stiffness Matrix A ∈ RN,N , N := dimS0

1 (M), for −∆.

HINT: First get the triplets for the mass matrix and S, then build the system block matrix MK
on the triplets level by using an offset. The use of index-value triplets for the initialization of
sparse matrices in the C++ template library Eigen is explained in [NPDE, Rem. 3.6.45]. [NPDE,
Code 3.6.49] provides an example for the use of triplets.

HINT: As usual, you are required to use your previous implementations of DofHandler,
MatrixAssembler, VectorAssembler, BoundaryDofs, and local assemblers, devel-
oped in subproblems 7.4, 8.1, and 8.2 (also available in the corresponding solution folders). You
will find the new required files for this problem in

assignments codes/assignment12/Problem1

(12.1d) Now, inside the class Radau3, implement the method

t empla te <c l a s s Funct ion>
void solve (Funct ion c o n s t& f , double dt) ;

for solving (12.1.1) approximately based on the spatial and temporal discretizations as described
above. The argument f gives the load function in procedural form (where f = f(x, t)), and dt
specifies the (fixed) timestep.

HINT: Remember LocalFunction takes as an argument a load function depending only on x.
You may use a lambda function to convert f to a function depending only on x (for a fixed t).

(12.1e) Complete main.cc To solve and plot the approximate solution of (12.1.1) at final time
T = 1 obtained by the method from subproblem (12.1c) using the mesh circle 320.msh and
the timestep τ = 0.02. Plot the obtained solution using Paraview.

HINT: For validation purposes you may compare your plot with that provided on the lecture’s
svn repository.

Problem Sheet 12 Page 2 Problem 12.1

Problem 12.2 Decaying Solution by Implicit Euler Timestepping (Core prob-
lem)

In this problem we practice the diagonalization technique that was a key tool in the stability anal-
ysis of single step methods for semi-discrete parabolic evolution problems, see the presentation
in [NPDE, Section 6.1.5.2] and [NPDE, Eq. (6.1.61)].

In class we learned that solutions of the abstract variational linear parabolic evolution problem

m(u̇, v) + a(u, v) = 0 ∀v ∈ V0, 0 < t < T,

u(0) = u0 ∈ V0,
(12.2.1)

where both m and a are symmetric positive definite bilinear forms on V0 that satisfy, see [NPDE,
Eq. (6.1.20)],

∃γ > 0 : a(v, v) ≥ γm(v, v) ∀v ∈ V0, (12.2.2)

display an exponential decay of their m-norm and energy norm, see [NPDE, Lemma 6.1.22].

A simple L(π)-stable [NPDE, Def. 6.1.84] implicit timestepping scheme for the semi-discrete
linear parabolic evolution problem

M
{ d

dt
µ⃗(t)

}
+Aµ⃗ = 0, 0 < t < T,

µ⃗(0) = µ⃗0,
(12.2.3)

arising from the method of lines (→ [NPDE, Section 6.1.4]) is the implicit Euler method, see
[NPDE, Eq. (6.1.36)]. Here, M and A denote the Galerkin matrices (→ [NPDE, Section 3.2])
associated with m and a w.r.t. an ordered basis of a finite-dimensional trial and test space V0,N ⊂
V0.

The question is, to what extent the sequence µ⃗
(j) generated by the implicit Euler method inherits

the exponential decay of the norms stated in [NPDE, Lemma 6.1.22].

(12.2a) Write down the formula for a step of the implicit Euler method producing µ⃗
(j) from

µ⃗
(j−1). Write τ > 0 for the size of the timestep.

(12.2b) From the generalized eigenvalue problem Aµ⃗ = λMµ⃗ we deduced the existence of
a regular matrix T ∈ RN×N such that (cf. the diagonalization technique discussed in [NPDE,
Section 6.1.5.2], and, in particular [NPDE, Eq. (6.1.58)], [NPDE, Suppl. 6.1.59])

AT = MTD, D := diag(λ1, . . . , λN) , T⊤MT = I .

Rewrite the implicit Euler step from subproblem (12.2a) in terms of the transformed coefficient
vectors η⃗(k)

:= T⊤Mµ⃗
(k), k = j − 1, j.

(12.2c) What will the norms
∥∥ξ⃗∥∥

M
:= (ξ⃗

⊤
Mξ⃗)

1
2 and

∥∥ξ⃗∥∥
A

:= (ξ⃗
⊤
Aξ⃗)

1
2 of a coefficient

vector µ⃗ become for the transformed vector η⃗ := T⊤Mµ⃗?

(12.2d) Express m(uN , uN) and a(uN , uN) through the coefficient vector µ⃗ associated with a
function uN ∈ V0,N from the discrete Galerkin trial/test space and through the Galerkin matrices
A and M. How does (12.2.2) read when stated in terms of matrices and coefficient vectors? What
is the relationship of γ and the generalized eigenvalues λi?

Problem Sheet 12 Page 3 Problem 12.2

(12.2e) In the sequel we assume a uniform timestep τ > 0. Show that∥∥µ⃗(j)
∥∥
M

≤ 1

1 + γτ

∥∥µ⃗(j−1)
∥∥
M
, (12.2.4)

where γ > 0 is the constant from (12.2.2).

HINT: There are two ways to tackle the problem: rephrase (12.2.4) in terms of η⃗(k) and look at
the implicit Euler method for these transformed coefficient vectors, see subproblem (12.2b). This
is another application of the diagonalization technique.

Alternatively, you may use the Cauchy-Schwarz inequality

ξ⃗
⊤
Mζ⃗ ≤

∥∥ξ⃗∥∥
M

∥∥ζ⃗∥∥
M
, (12.2.5)

and the implicit Euler recursion formula from subproblem (12.2a)

(12.2f) Now show (12.2.4) with ∥·∥M replaced with ∥·∥A.

HINT: Here it is recommended to use diagonalization and the result of subproblem (12.2c).

(12.2g) What is the relationship of the estimates obtained in subproblems (12.2e) and (12.2f)
with [NPDE, Lemma 6.1.22].

HINT: Bound
∥∥µ⃗(j)

∥∥
M

and
∥∥µ⃗(j)

∥∥
A

in terms of
∥∥µ⃗(0)

∥∥
M

and
∥∥µ⃗(0)

∥∥
A

, respectively. Then, for
fixed t consider τ → 0 and j ≈ t/τ → ∞. Remember the limit

et = lim
n→∞

(1 + t
n
)n , t ∈ R .

Problem 12.3 Radiative Cooling
This problem is dedicated to the full spatial and temporal discretization of a 2nd-order parabolic
evolution problem, see [NPDE, Section 6.1]. It will also ask for implementation in C++ in later
sub-problems.

The evolution of the temperature distribution u = u(x, t) in a homogeneous “2D body” (oc-
cupying the space Ω ⊂ R2) with convective cooling (→ [NPDE, Ex. 2.7.5]) is modelled by the
linear second-order parabolic initial-boundary value problem (IBVP) with flux (spatial) boundary
conditions (→ [NPDE, § 6.1.9])

∂u

∂t
−∆u = 0 in Ω× [0, T],

−gradu · n = cu on ∂Ω× [0, T],

u(x, 0) = u0(x) in Ω,

(12.3.1)

with c > 0.

We pursue a method of lines approach, see [NPDE, Section 6.1.4]. For the spatial Galerkin semi-
discretization of (12.3.1) we employ linear finite elements on a triangular mesh M of Ω (FE space
S0
1 (M)) with polygonal boundary approximation.

(12.3a) Derive the spatial variational formulation of the form m(u̇, v) + a(u, v) = ℓ(v) for
(12.3.1), with suitable bilinear forms a and m, and linear form ℓ. Do not forget to specify the
function spaces for u(t, ·) and the test function v.

HINT: Combine the considerations leading to [NPDE, Eq. (6.1.14)] with the approach explained
in [NPDE, Ex. 2.9.6].

Problem Sheet 12 Page 4 Problem 12.3

(12.3b) Argue why the total thermal energy

E(t) :=

∫
Ω

u(x, t) dx ,

decreases with time, if u0(x) > 0 for all x ∈ Ω.

HINT: Appeal to the heat conduction background to justify the assumption that u(x, t) ≥ 0 for
all (x, t). Use test function v ≡ 1 in the variational formulation.

(12.3c) Compute the local mass matrix MK̂ corresponding to m(·, ·) and the local stiffness
matrix AK̂ corresponding to a(·, ·) for the unit triangle K̂ with vertices

(
0
0

)
,
(
1
0

)
and

(
0
1

)
. Assume

that the edge connecting
(
0
0

)
and

(
1
0

)
forms part of ∂Ω and that the coefficient c is constant along

this edge.

HINT: See [NPDE, Def. 3.6.35] for the definition of local matrices, and [NPDE, Section 3.3.5]
for concrete formulas. [NPDE, Lemma 3.6.61] for d = 2 may also come handy.

(12.3d) Now we turn to the full spatial semi-discretization of (12.3.1). Template files for the
new classes you will need to write are available in the lecture svn repository

assignments codes/assignment12/Problem3

In EvSolver.hpp, implement the method

t empla te <c l a s s Funct ion>
computeTr ip le ts (Funct ion c o n s t& c , T r i p l e t &t r i pA , T r i p l e t &t r i pM)

that computes the triplet vectors tripM and tripA for M,A ∈ RN×N , N := dimS0
1 (M), for the

semi-discrete evolution

M
d

dt
µ⃗(t) +Aµ⃗(t) = 0 (12.3.2)

resulting from the S0
1 (M)-based finite element semi-discretization of (12.3.1), when standard

nodal bassis functions are used. Here, the argument c supplies the value of c.

HINT: The use of index-value triplets for the initialization of sparse matrices in the C++ template
library Eigen is explained in [NPDE, Rem. 3.6.45]. [NPDE, Code 3.6.49] provides an example
for the use of triplets.

HINT: Do not use the result of sub-problem (12.3c) (which is only valid for a very special trian-
gle). Use your already implemented DofHandler, MatrixAssembler, VectorAssembler,
BoundaryDofs, and local assemblers, developed in subproblems 7.4, 8.1, and 8.2 (also avail-
able in the corresponding solution folders).

HINT: Since we are dealing with Robin B.C., your bilinear form should have a term which is
integrating over the boundary. This means the local assembler has to take edges as element
type instead of triangles, reason why you cannot use your analytical implementations. This was
already done in subproblem (8.2g). Solution to subproblem (8.1e) might also be useful.

Problem Sheet 12 Page 5 Problem 12.3

(12.3e) In [NPDE, Ex. 6.1.85] you learned about the L-stable SDIRK-2 implicit 2-stage Runge-
Kutta method described by the Butcher scheme

λ λ 0
1 1− λ λ

1− λ λ
λ := 1− 1

2

√
2 . (12.3.3)

Derive the recursion obtained by applying the SDIRK-2 method to the linear scalar ODE ẏ =
−γy, γ ∈ R.

(12.3f) Determine the order of the SDIRK-2 single step method empirically by applying it to
the initial value problem ẏ = −y on [0, 2], y(0) = 1. To that end write a short code in MATLAB
or C++.

(12.3g) Give a rigorous proof that the SDIRK-2 method is L(π)-stable (→ [NPDE, Def. 6.1.84]).

HINT: Of course, the recursion found in subproblem (12.3e) has to be used. Then the problem
boils down to discussing the behavior of a rational function on the (positive) real axis.

(12.3h) [NPDE, § 6.1.42] presents the linear system of equations for the increments of an s-
stage Runge-Kutta method when applied to the semi-discrete evolution (12.3.2). State this linear
system explicitly in block form for the special case of the SDIRK-2 method.

(12.3i) Write a method

t empla te <c l a s s Funct ion>
void solve (Vector & U, Funct ion c o n s t& c) ;

in EvSolver that carries out m uniform timesteps of the in order to solve (12.3.1) over the time in-
terval [0, 1]. The finite element Galerkin discretization from subproblem (12.3d) is used in space.
The argument U is a column vector that passes the values of the initial temperature distribution in
the vertices of the mesh. The return value provides the basis coefficients of the approximation of
u(·, 1) of u at t = 1. This function will be called within the main.

HINT: From [NPDE, Def. 6.1.39] and [NPDE, Eq. (6.1.41)] it should be clear how to obtain
the linear systems of equations [NPDE, Eq. (6.1.43)], [NPDE, Eq. (6.1.44)] for the Runge-Kutta
increments.

(12.3j) In EvSolver, implement a method

double average (Vector c o n s t& U) ;

that computes
∫
Ω
u dx for u ∈ S0

1 (M). The argument U passes the coefficients of u w.r.t. the
standard nodal basis of S0

1 (M).

HINT: Your implementation for subproblem (7.3a) might be useful.

(12.3k) For the evolution problem (12.3.1) on Ω = (0, 1)2 track the behavior of the thermal
energy

E(t) =

∫
Ω

u(x, t) dx (12.3.4)

Problem Sheet 12 Page 6 Problem 12.3

over the period [0, T] for u0 ≡ 1, γ = 1. Use the fully discrete evolution implemented in
EvSolver::solve() and extend it, so it also computes approximations for E(tk) for k = 0, . . . ,m
(tk are the points of the equidistant temporal grid). Then implement a method Vector getE() which
returns a Vector E containing said approximations.

Complete main.cc to compute u(x, t) for t = 1 for the mesh supplied in the file square 32.msh.
Make a plot of u for t = 0 and t = 1 using Paraview. Plot the approximation for E(t) that you
have computed as a function of t for m = 100.

HINT: The plot for E is depicted in Figure 12.1.

time t
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
he

rm
al

 e
ne

rg
y

E
(t

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 12.1: Result of subproblem (12.3k)

Published on 13.05.2015.
To be submitted on 20.05.2015.

References

[NPDE] Lecture Slides for the course “Numerical Methods for Partial Differential Equa-
tions”.SVN revision # 76119.

[NCSE] Lecture Slides for the course “Numerical Methods for CSE”.

Last modified on May 13, 2015

Problem Sheet 12 Page 7 References

