Spring Term 2015

R. Hiptmair‘ ETH Ziirich
L. Scarabosio Numerical Methods for Partial D-MATH
C. Urzua Torres Differential Equations

Homework Problem Sheet 12

Problem 12.1 Radau-3 Timestepping (Core problem)

This short problem studies the full discretization of a linear second-order parabolic initial-boundary
value problem as discussed in [NPDE, Section 6.1.1]. The focus will be on the implementation
of higher-order implicit Runge-Kutta timestepping.

We consider the parabolic IBVP with homogeneous Dirichlet boundary conditions and zero initial
conditions

U — Au= f(x,t) inQ x (0,1),

u=20 on 9 x (0, 1), (12.1.1)

u=>0 on {2 x {0},
where the spatial domain (2 is the unit disk

Q:={xcR? |z|] <1}
The time-dependent source function is given by
Flant) = {1 if o =3l < 5
0 elsewhere.

We pursue the method of lines approach, see [NPDE, Section 6.1.4]. Spatial discretization relies

on linear Lagrangian finite elements on a triangular mesh M, that is, Vo v = S87,(M), using a
polygonal approximation of 0.

When higher order timestepping schemes are desired for the initial value problem arising from the
method of lines approach, L(m)-stable implicit Runge-Kutta methods (— [NPDE, Def. 6.1.39])
are the methods of choice. One example is the Radau-3 scheme, a 2-stage implicit Runge-Kutta
method, whose description via a Butcher scheme is given in [NPDE, Eq. (6.1.86)].

(12.1a) Devise and implement (in C++ or MATLAB) a numerical experiment for determining
the order of (algebraic) convergence of the Radau-3 method, when applied to the initial value
problem for a scalar ODE § = —y, y(0) = 1, on [0, 2]. Which order do you find?

HINT: [NPDE, § 1.6.26] discussed “measurements” for rates of convergence. Measure the error
maxy, [y(t) — y*| for various timestep sizes 7 > 0 (equidistant timesteps).

Solution: Here y = —y. Applying the Radau scheme, we get

D 1

K1 = —y—TEKZl +TEKZ2 (1212)
3 1

Ko = —Y — 7'1/11 — Tzl/ig (12.1.3)

Problem Sheet 12 Page 1 Problem 12.1

solving this system, we get

(141 —(1 -1
iy = Uramy =gy (12.1.4)
I+73)0+75)+ 5 I+73)0+715)+ 5
Finally, updating the solution, we get
j+1 ' 3 1
Y’ =Y+ Tzlm + TZK/Q (12.1.5)

L+728)(1+7h)+ o

yi (1(T1+5)) (12.1.6)

As expected, 3™ order convergence is achieved. See Listing 12.1 for details.

Listing 12.1: Implementation of convergence

16 double tau = 1./N;
17 Vector Y(N+1), Yex(N+1);
18 Y[0] = 1; Yex[0] = 1;

20 for(int i = 1; i <= N; i++){

21 Y[i] = (1 — (taux((tau/6. + 1)/(((1 + 5xtau/12.)x(1+tau/4.)) +
tauxtau/16.))))«Y[i—1];

2 Yex[i] = Yex[0]«xexp(—tauxi);

2 }

24 err = (Y —Yex) .lpNorm<Eigen :: Infinity >();

25 }

7 | int main(int argc, char sxargv[]){
28 Vector err(7), err2(7);

29 Vector ConvRate(7);

30 for(int k = 0; k < 7; k++){

31 int N =20 x pow(2,k);

2 Radau_Scalar(N, err[k], err2[k]);
33 if (k>0){

34 ConvRate[k—1] = log(err[k]/err[k—1])/log(2.0);
35 }

36 }

37 std ::cout << "Done.\n”;

38 std :: cout << ConvRate ;

39

40 return 0;

a |}

(12.1b) The application of s-stage Runge-Kutta single step methods according to [NPDE,
Def. 6.1.39] entails the computation of s increments in each timestep. For the linear ordinary
differential equation [NPDE, Eq. (6.1.29)] arising from the method of lines approach to a lin-
ear parabolic evolution problem the increments can be obtained by solving a linear system of
equations, see [NPDE, § 6.1.42] and [NPDE, Eq. (6.1.43)].

Describe this linear system of equations (in block form) for the RADAU-3 method for (12.1.1)
using the notations A and M for the N x N finite element Galerkin matrices associated with
the bilinear form for —A and the L*(2)-inner product, respectively. Write @(¢) for the time-
dependent right hand side vector obtained by Galerkin discretization of the source term.

Problem Sheet 12 Page 2 Problem 12.1

Solution: From [NPDE, § 6.1.42] we know

5 ~1 1 .
MR + T~ AR + T— ARy = @(t; + =7) — AV (12.1.7)
12 12 3
3 1 .
MF, + 7 ARy + 7 ARy = Gty +7) - AV (12.1.8)

which gives rise to

M+75A THA < R) B < B(t; + ir) — A9 >
A M+triA |\ R Bty +7) — A

(12.1c) Complete the class Radau3 provided in the svn repository, by implementing the
method

void computeSystemMatrix_(Matrix & MK, Matrix & A, double dt)

which takes as argument the timestep dt, computes the required triplets, and finally fills the coef-
ficient matrix MKe R?"2Y for the linear system supplying the increments, see subproblem (12.1b).
The argument A returns the stiffness Matrix A € RVY, N := dim S (M), for —A.

HINT: First get the triplets for the mass matrix and S, then build the system block matrix MK
on the triplets level by using an offset. The use of index-value triplets for the initialization of
sparse matrices in the C++ template library Eigen is explained in [NPDE, Rem. 3.6.45]. [NPDE,
Code 3.6.49] provides an example for the use of triplets.

HINT: As usual, you are required to use your previous implementations of DofHandler,
MatrixAssembler, VectorAssembler, BoundaryDofs, and local assemblers, devel-
oped in subproblems 7.4, 8.1, and 8.2 (also available in the corresponding solution folders). You
will find the new required files for this problem in

assignments_codes/assignmentl2/Probleml

Solution: See Listing 12.2 for the code.

Listing 12.2: Implementation of computeSystemMatrix_()

m | template <class DofHandler>
12 | void Radau3<DofHandler >::computeSystemMatrix_(Matrix & MK, Matrix & A,
double dt) {

13 // Assemble 2n+2n time stepping matrix

14 NPDE15:: MatrixAssembler<DofHandler> matAssembler(dofh) ;

115 // compute triplets

116 Triplets A_trp, M_trp, triplets;

117 matAssembler (A_trp, NPDE15:: AnalyticalLocalLaplace());

118 matAssembler. set_inactive (A_trp);

19 matAssembler (M_trp, NPDE15:: AnalyticalLocalMass ()) ;

120 matAssembler. set_inactive (M_trp);

121

122 // add stiffness entries to time stepping matrix (blockwise using

offset = N)

123 for (auto & : A_trp){

124 double val = dtxa.value();

125 triplets .push_back(Triplet(a.row() , a.col() , 5./12.xval));
//top—lerft
submatrix

Problem Sheet 12 Page 3 Problem 12.1

126

127

129
130
131
132

133

134
135
136
137
138
139
140
141

triplets .push_back(Triplet(a.row() , a.col()+N, —1./12.xval));
//top-right
. submatrix i

triplets .push_back(Triplet(a.row()+N, a.col() , 0.75xval));

//bottom-left

submatrix
triplets .push_back(Triplet(a.row()+N, a.col()+N, 0.25xval))

//bottom-right
submatrix

}

// and add mass entries
for (auto & : M_trp){

triplets .push_back(Triplet(m.row(), m.col(), m.value())); //
top—-left submatrix
triplets .push_back(Triplet (m.row()+N,m.col ()+N,m.value())); //
) bottom-right submatrix

// make system matrix from triplets
MK.setFromTriplets (triplets .begin(), triplets.end());
MK. makeCompressed () ;

// make auxiliary stiffness matrix
A.setFromTriplets (A_trp.begin() ,A_trp.end());
A.makeCompressed () ;

(12.1d) Now, inside the class Radau3, implement the method

template <class Function>
void solve(Function const& f, double dt);

for solving (12.1.1) approximately based on the spatial and temporal discretizations as described
above. The argument f gives the load function in procedural form (where f = f(x,t)), and dt
specifies the (fixed) timestep.

HINT: Remember LocalFunction takes as an argument a load function depending only on x.
You may use a 1ambda function to convert f to a function depending only on x (for a fixed t).

Solution: See Listing 12.3 for the code.

53
54
55
56
57
58
59
60
61
62
63
64

66
67
68
69

70

Listing 12.3: Implementation of solve ()

template <class DofHandler>
template <class Function>
void Radau3<DofHandler >::solve (Function const& f, double dt){

// Get boundary nodes
IndexVector dirichlet_dofs (N);
NPDE15:: LBoundaryDofs<DofHandler> get_bnd_nodes (dofh);
get_bnd_nodes(dirichlet_dofs);
dofh.set_inactive (dirichlet_dofs);

// Get timestepping and auxiliary matrix
Matrix MK(2xN, 2xN) ;

Matrix A(N,N) ;

computeSystemMatrix_ (MK, A, dt);

// solution vector u, zero initial conditions
Vector U(N); U.setZero();
// increment (calculated at each time step)

Problem Sheet 12 Page 4 Problem 12.1

71 Vector k(2«N); k.setZero();
72
73 unsigned timeiter = 1;
74
75 calc.t t = 0.0;
76 auto fx = [&t, &f](Coordinate const& x) { return f(x,t); };
77
78 NPDE15:: VectorAssembler<DofHandler> vecAssembler(dofh);
79 for (calc_-t time = 0; time <= 1; time += dt){
80 Vector L1(N),L2(N); L1.setZero();L2.setZero();
81 Vector G(N); G.setZero();
82 t = time + dt/3.;
83 vecAssembler (L1, NPDE15::LLocalFunction (fx));
84 vecAssembler.set_inactive (L1, G);
85 t = time + dt;
86 vecAssembler (L2, NPDE15:: LLocalFunction (fx));
87 vecAssembler.set_inactive (L2, G);
88 // Axu vector
89 Vector Au = AxU;
9 // concatenate vectors (Z2N-sized r.h.s. vector)
91 Vector L(2xN);
9 L << L1 — Au, L2 — Au;
93
04 // solve for increment
95 k = L/MK;
9% // apply update
97 U += dt«(0.75xk.head(N) +0.25x«k. tail (N));
98
99 if (timeiter==floor (1./dt)){
100 Dune:: VTKWriter<GridView> vtkwriter(gv);
101 std :: stringstream outputName;
102 outputName << "solution”;
103 vtkwriter.addVertexData (U, "u.app(x)”);
104 vitkwriter.write (outputName. str () .c_str());
105 }
106 std ::cout << "Time lteration #” << timeiter++ << "\n”;
107
}

(12.1e) Complete main. cc To solve and plot the approximate solution of (12.1.1) at final time
T = 1 obtained by the method from subproblem (12.1c) using the mesh circle_320.msh and
the timestep 7 = 0.02. Plot the obtained solution using Paraview.

HINT: For validation purposes you may compare your plot with that provided on the lecture’s
svn repository.

Solution: Include lines 99 to 105 in Listing 12.3 and write main to call Radau3: :solve (),
see Listing 12.4 for details.

Listing 12.4: Implementation of main.cpp

s | int main(int argc, char sxargv[]){

29 try{

30 // load the grid from file

31 std :: string FileName = “"circle_320.msh”;

32

33 // Declare and create mesh using the Gmsh file

Problem Sheet 12 Page 5 Problem 12.1

34
35

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

60
61
62
63
64
65

67
68
69
70

Dune :: GridFactory<GridType> gridFactory;

Dune :: GmshReader<GridType >::read (gridFactory , FileName.c_str(), false
true) ;

std ::unique_ptr<GridType> workingGrid (gridFactory.createGrid ()) ;

workingGrid—loadBalance () ;

// Get the Gridview
GridView gv = workingGrid—leafGridView () ;

// Initialize dof—-handler
DofHandler dofh(gv);

unsigned N = dofh.size () ;
std ::cout << "Solving for N =

” ”

<< N << ” unknowns.\n”;
// Load function
auto f = [](Coordinate const& x, calc_t t){
calc_.t x1 = x[0]—0.5xcos(M_Plxt);
calc_t x2 = x[1]—=0.5xsin(M_Plxt);
calc_t norm = sqrt (x1xx1+x2xx2);
if (norm<0.5)
return 1.;
return 0.;

}s

Radau3<DofHandler> radau_evolution (dofh);
radau_evolution.solve(f, 0.02);
std ::cout << "Done.\n”;

}

// catch exceptions

catch (Dune::Exception &e){
std ::cerr << "Dune reported error:

<< e << std::endl;

}
catch (...)
std ::cerr << "Unknown exception thrown!” << std::endl;
}
return 0;

The output should look like the figure below.

Problem Sheet 12 Page 6 Problem 12.1

8

mummlmrrwrwwxlxxwxxmf

)
1.153e-01

°
2

.075

°
o
@

0.025

0.000e+00

Figure 12.1: Solution for subproblem (12.1d)

Problem 12.2 Decaying Solution by Implicit Euler Timestepping (Core prob-
lem)

In this problem we practice the diagonalization technique that was a key tool in the stability anal-
ysis of single step methods for semi-discrete parabolic evolution problems, see the presentation
in [NPDE, Section 6.1.5.2] and [NPDE, Eq. (6.1.61)].

In class we learned that solutions of the abstract variational linear parabolic evolution problem
m(i,v) +a(u,v) =0 Yoel, 0<t<T,
U(O) = Uug € VE),

where both m and a are symmetric positive definite bilinear forms on V}, that satisfy, see [NPDE,
Eq. (6.1.20)],

(12.2.1)

Iy >0: a(v,v)>ym(v,v) Yo eV, (12.2.2)
display an exponential decay of their m-norm and energy norm, see [NPDE, Lemma 6.1.22].

A simple L(m)-stable [NPDE, Def. 6.1.84] implicit timestepping scheme for the semi-discrete
linear parabolic evolution problem
d
M{—*t } Afi=0, 0<t<T,
gyt Al (12.2.3)
ﬁ(O) = ﬁO)
arising from the method of lines (— [NPDE, Section 6.1.4]) is the implicit Euler method, see
[NPDE, Eq. (6.1.36)]. Here, M and A denote the Galerkin matrices (— [NPDE, Section 3.2])

associated with m and a w.r.t. an ordered basis of a finite-dimensional trial and test space Vy y C
Vo.

The question is, to what extent the sequence ﬁ(j) generated by the implicit Euler method inherits
the exponential decay of the norms stated in [NPDE, Lemma 6.1.22].

Problem Sheet 12 Page 7 Problem 12.2

(12.2a) Write down the formula for a step of the implicit Euler method producing ﬁ(j) from

iV~ Write 7 > 0 for the size of the timestep.
Solution:

09 = (7A +M)"'(MEY"™) orequivalenty M(G? — G V) = —7ARY
(12.2b) From the generalized eigenvalue problem A = AM we deduced the existence of

a regular matrix T € RY*¥ such that (¢f. the diagonalization technique discussed in [NPDE,
Section 6.1.5.2], and, in particular [NPDE, Eq. (6.1.58)], [NPDE, Suppl. 6.1.59])

AT = MTD, D :=diag(\,...,\y), T 'MT=1I.

Rewrite the implicit Euler step from subproblem (12.2a) in terms of the transformed coefficient
k) . T o s 1 s
vectors) =T ' Mu", k=45—1,7.

Solution: We multiply both sides of the equation above by T . This results in:

TTM(ﬁ(j) _ ﬁ(j—l)) _ —TTTAﬁ(j)
we can rewrite it as

T MGEY — @) = —7TTAM T TT MY

Therefore, denoting 7 = TTMi" this becomes

ﬁ'(]) . ﬁ'(]fl) — _TTTAM_IT_Tﬁ(j)
Finally, observe T"'M T~ T = I and obtain

ﬁ‘(]) _ ﬁ(j_l) — _TTTATT—]’(J) — _TDT—]"(J)

(12.2¢) What will the norms ||§,||M = (ETME)% and HF:HA = (ETAE)% of a coefficient
vector [become for the transformed vector 1j := T TMi?

Solution: First, since j = T M, we have i = M~1(T)~ "1, so
. T T Ty 1)2
il = (57 MD)Y2 = (M7 i) TMM T T4)) Y
_ (T—]»TTfl(Mfl)TMMfleTﬁ)l/Q
= ([TIMT)2 = I,
and
. T o RPN, T 1/2
Il = (G AR = (M'T) AT)Y
_ (ﬁ"TT—l(M—l)TAM—lT—Tﬁ)l/Q
[T 'MATT'M T~ "7)Y? = (7 D)2

Problem Sheet 12 Page 8 Problem 12.2

(12.2d) Express m(uy, uy) and a(uy, uy) through the coefficient vector (i associated with a
function uy € Vp v from the discrete Galerkin trial/test space and through the Galerkin matrices
A and M. How does (12.2.2) read when stated in terms of matrices and coefficient vectors? What
is the relationship of v and the generalized eigenvalues \;?

Solution: We get

N N N N
m(uy, uy) = m (Z bl Zw%) =D > magm(biy, by) = (|l
i=1 =1

i=1 j—l
N N
i ' HE
o) =Stk St) = 3 asat) -
=1 J=1 =1 j=1
It follows that (3) can be rewritten as
Iy >0: iAf >~ Mf, ViieRY.
Using the results from the previous points, we have that
—T — —T — T — T =
pAp>yp Mp <= n Dn>m 1
which translates to
Am; >, Vi€ {1,..,N}

From here it follows that
v < min{A;, ..., Ay}

(12.2e) In the sequel we assume a uniform timestep 7 > 0. Show that

~(7) < 1 ~(j—1) 12.2.4
e L (1224

where v > 0 is the constant from (12.2.2).
HINT: There are two ways to tackle the problem: rephrase (12.2.4) in terms of 1 ™) and look at

the implicit Euler method for these transformed coefficient vectors, see subproblem (12.2b). This
is another application of the diagonalization technique.

Alternatively, you may use the Cauchy-Schwarz inequality

£ ME < €]l (1225)
and the implicit Euler recursion formula from subproblem (12.2a)

Solution: We already know that

(j 1 S(j— S(j 1 (-
L N e LR VR L e [
From the subproblem (12.2b) we know that
ﬁ'(j) . ﬁ'(jfl) _ —TDﬁ(7) ﬁ(7 _ (1 + TD)—lﬁ'(jfl)
Since v < {\y, ..., Ay} it follows that (1 + 7D)~! < (1 + 7yIy) . Therefore
iy i 1 i
[A71) = @+ D)) < = 7

Problem Sheet 12 Page 9 Problem 12.2

(12.2f) Now show (12.2.4) with |[|-||,, replaced with ||-|| ,.

HINT: Here it is recommended to use diagonalization and the result of subproblem (12.2c).

Solution:

59|, < 1 jWHﬁ(jl)”A = ({9 DR < ﬁ((ﬁ“l))TDﬁ(j”)W
— IVDn®| < G|
= VA H—1+ \/_|| PV vie {1}
- 9] < it vie)

which follows directly from subproblem (12.2¢).

(12.2g) What is the relationship of the estimates obtained in subproblems (12.2e) and (12.2f)
with [NPDE, Lemma 6.1.22].

HINT: Bound Hﬁ(j)”M and |||1(j)HA in terms of Hu O)HM and ||u
fixed t consider 7 — 0 and j ~ t/T — oco. Remember the limit

A» respectively. Then, for

=lim(1+4H)", teR.

n—oo

Solution: [NPDE, Lemma 6.1.22] tells us that
[u®)ll 20y < e luoll o) ()11 (@) < € |uol g
Writing the approximate solution uy (t) = Zf\il bl we get

[u@ 2@y = 8Os Tun(@lmro) = [HO] 4

From the previous point we have that

() L o= IR
169 e < 518 e = (157) 1
We now consider that the interval (0,¢) = (0,¢;) has been discretized into n intervals, with

T = t/n it follows that

0 < (157) 18Ol = (1

which becomes for n — oo

Y 1) < (1-2) 150

16 e < e [[E(0) |y
In the same way,

@4 < e IHO)]|a

It follows that the relations from subproblems (12.2e) and (12.2f) converge to the ones from
[NPDE, Lemma 6.1.22] in the limit n — oo.

Problem Sheet 12 Page 10 Problem 12.2

Problem 12.3 Radiative Cooling

This problem is dedicated to the full spatial and temporal discretization of a 2"-order parabolic
evolution problem, see [NPDE, Section 6.1]. It will also ask for implementation in C++ in later
sub-problems.

The evolution of the temperature distribution © = wu(x,t) in a homogeneous ‘“2D body” (oc-
cupying the space 0 C R?) with convective cooling (— [NPDE, Ex. 2.7.5]) is modelled by the
linear second-order parabolic initial-boundary value problem (IBVP) with flux (spatial) boundary
conditions (— [NPDE, § 6.1.9])

E_AUZO inQX[O,T]a

—gradu-n = cu on 0%) x [0, T,
u(zx,0) = ug(x) inQ,

(12.3.1)

with ¢ > 0.

We pursue a method of lines approach, see [NPDE, Section 6.1.4]. For the spatial Galerkin semi-
discretization of (12.3.1) we employ linear finite elements on a triangular mesh M of €2 (FE space
SY(M)) with polygonal boundary approximation.

(12.3a) Derive the spatial variational formulation of the form m(u,v) + a(u,v) = ¢(v) for
(12.3.1), with suitable bilinear forms a and m, and linear form ¢. Do not forget to specify the
function spaces for u(t, -) and the test function v.

HINT: Combine the considerations leading to [NPDE, Eq. (6.1.14)] with the approach explained
in [NPDE, Ex. 2.9.6].

Solution: In order to derive the spatial Formulation of (12.3.1), we multiply with a test function
v (does not depend on time!) and integrate over §2:

/m dx+/gradu~gradvdw—/ vgradu-mn de =0
Q Q o0

= [uv dac—i—/gradu-gradv daz—f—/ cuvde=_0
\/Q Q o9 ~

~ V) ~ P vl f(y)
m(u,v) a(u,w)

For any ¢ € [0, T'] the function spaces are

ult,) e HY(Q)=U , ve H(Q)=V.
(12.3b) Argue why the total thermal energy

B(t) = /Qu(:c,t) dx |

decreases with time, if ug(ax) > 0 for all x € (.

HINT: Appeal to the heat conduction background to justify the assumption that u(x,t) > 0 for
all (x,t). Use test function v = 1 in the variational formulation.

Solution: The quantity u specifies the temperature distribution. We track the temporal evolution
of the diffusion of the temperature. These two physical effects can never lead to negative values

Problem Sheet 12 Page 11 Problem 12.3

in the temperature distribution except if there were negative values in the start. The boundary
condition models convective cooling (— [NPDE, Ex. 2.7.5]) where our domain) is embeded
in a fluid at bulk temperature 0. So if v > 0 on the boundary then the 2D body will be cooled.
The convective cooling dissapears as v — 0 (it would even warm the 2D body for negative
temperature u < 0).

Thus u(x,t) > 0 and
E(t) ::/u(a:,t) dx :/ lu(x, t)| da > 0.
0 Q

We do a similar computation to [NPDE, Lemma 6.1.22], but we don’t need to use the function w
that is introduced there, we can do the calculation directly

d d d
aE(t) =% /Qu(a:,t) de = Em(u, 1) = —a(u,1) = —c/mudw <0.

>0

Where in the last step we used the positivity of u. The case %E (t) = 0 appears only for u = 0.

(12.3¢c) Compute the local mass matrix Mz corresponding to m(-,-) and the local stiffness
matrix A ;; corresponding to a(-, -) for the unit triangle K with vertices ({), () and (}). Assume

that the edge connecting () and () forms part of OS2 and that the coefficient c is constant along
this edge.

HINT: See [NPDE, Def. 3.6.35] for the definition of local matrices, and [NPDE, Section 3.3.5]
for concrete formulas. [NPDE, Lemma 3.6.61] for d = 2 may also come handy.

Solution: The mass and stiffness matrices are

M= -
24

[\
|
—_
|
—
DN
DN =

1
A=—-1-1 1
5 +

— =N

1
2
1

DO =

(12.3d) Now we turn to the full spatial semi-discretization of (12.3.1). Template files for the
new classes you will need to write are available in the lecture svn repository

assignments_codes/assignmentl2/Problem3

In EvSolver. hpp, implement the method

template <class Function>
computeTriplets_(Function const& c, Triplet &tripA, Triplet &tripM)

that computes the triplet vectors tripM and tripA for M, A € RV*¥ N := dim SY(M), for the
semi-discrete evolution

d . ~
Mau(t) +AL(t) =0 (12.3.2)
resulting from the SY(M)-based finite element semi-discretization of (12.3.1), when standard

nodal bassis functions are used. Here, the argument c supplies the value of c.

Problem Sheet 12 Page 12 Problem 12.3

HINT: The use of index-value triplets for the initialization of sparse matrices in the C++ template
library Eigen is explained in [NPDE, Rem. 3.6.45]. [NPDE, Code 3.6.49] provides an example
for the use of triplets.

HINT: Do not use the result of sub-problem (12.3c) (which is only valid for a very special trian-
gle). Use your already implemented DofHandler,MatrixAssembler,VectorAssembler,
BoundaryDofs, and local assemblers, developed in subproblems 7.4, 8.1, and 8.2 (also avail-
able in the corresponding solution folders).

HINT: Since we are dealing with Robin B.C., your bilinear form should have a term which is
integrating over the boundary. This means the local assembler has to take edges as element
type instead of triangles, reason why you cannot use your analytical implementations. This was
already done in subproblem (8.2¢g). Solution to subproblem (8.1e) might also be useful.

Solution:

Listing 12.5: Implementation of computeTriplets_()

12 | template <class DofHandler>

3 | template <class Function>

na | void EvSolver<DofHandler >::computeTriplets_(Function const& c,
115 Triplets &tripA,

116 Triplets &tripM){

117

118 NPDE15:: LBoundaryDofs<DofHandler> get_bnd_dofs (dofh) ;

19 // obtain index vectors corresponding to boundary

120 IndexVector robin_dofs;

121 get_bnd_dofs(robin_dofs);

122 // Create matrix Assembler

123 NPDE15:: MatrixAssembler<DofHandler> matAssembler(dofh) ;

124 // fill triplets for a(,) considering boundary term

125 matAssembler(tripA , NPDE15:: AnalyticalLocalLaplace());
126 matAssembler(tripA , NPDE15::LocalMass(c), robin_dofs);
127 // fill triplets for m(,)

128 matAssembler (tripM , NPDE15:: AnalyticalLocalMass ()) ;

120 |}

(12.3e) In[NPDE, Ex. 6.1.85] you learned about the L-stable SDIRK-2 implicit 2-stage Runge-
Kutta method described by the Butcher scheme

AlLA 0
L|1-X X A=1-1v2. (12.3.3)
I-X A

Derive the recursion obtained by applying the SDIRK-2 method to the linear scalar ODE y =
=y, € R,
Solution: Here y = —~y. SDIRK-2 single step method

K1 = —YY — YT AK1 (12.3.4)
ke = =y —7(1 = A)k1 — 7T Akg (12.3.5)
solving this system, we get
—yy —yy(1 4+ 2 1 — 1)
= = 12.3.6
METO ™ (14 A7)2 ()

Problem Sheet 12 Page 13 Problem 12.3

Finally, updating the solution, we get

YT = Y7 + 7(1 — N)ky + Tk (12.3.7)
: (1 4+ A7)
::y]<1__ e (12.3.8)

(12.3f) Determine the order of the SDIRK-2 single step method empirically by applying it to
the initial value problem y = —y on [0, 2], y(0) = 1. To that end write a short code in MATLAB

or C++.

Solution: The order is 2 as expected. See Listing 12.6 and Listing 12.7.

Listing 12.6: Implementation for subproblem (12.3f)

1 | $Radau Convergence analysis

3 IN = [20 40 80 160 320 740 14801];
s lerr = ones (1, length (N));

6 lerr2 = ones (1, length (N));

7 |[Rate_conv = ones (1, (length (N) - 1));

o |[for 1 = 1:length (N)

10 [Y,err(i)] = RadCol_Scalar (N(i));
11 if (1 > 1)
12 Rate_conv (i - 1) =
log (err (i) /err(i-1))/log (N (i) /N(i-1));
13 end;
14 end;
6 | figure (1)

7 |loglog (N, err) ;
18 |Rate_conv

Listing 12.7: Implementation for subproblem (12.3f)

1 |function [Y,err] = RadCol_Scalar (N)

3 [tau = (1/N);

4+ |T = (O:tau:l);

s |Y = ones (1, length (T));

6 |[Yex = ones (1, length (T));

s |1 =1 — sqrt(2)/2;

o |[Y(1) = 1;

n [Yex (1) 1;

3 |for 1 = 2:length (Y)

Problem Sheet 12 Page 14 Problem 12.3

14 Y(1i) = (1 - taux(l + 172xtau)/ (l+lxtau) "2)*xY(i-1);
15 Yex (i) = Yex(1l)xexp (—taux(i-1));
16 end;

s |lerr = max(abs (Y - Yex));

» |end

(12.3g) Give arigorous proof that the SDIRK-2 method is L(7)-stable (— [NPDE, Def. 6.1.84]).

HINT: Of course, the recursion found in subproblem (12.3e) has to be used. Then the problem
boils down to discussing the behavior of a rational function on the (positive) real axis.

Solution: We use the recursion found in subproblem (12.3e) to get

, 1+ A7) 7
yirt — (1= TLEATN o 12.3.9
((14 A7)? ’ ()
: T Tv(14+A%7)
1.€. ‘I;'y = (1 — W)
We want to show that Vy > 0
lim (U7)yo =0, Vyo € R, V7 > 0. (12.3.10)
j—o0
Ty(1+A27)

It suffices to prove that > 0, since this will guarantee that |\I/Ty} < 1 and therefore

‘ (14+X7)2
lim; oo (V7)) = 0. As 7,7 > 0, it is clear the whole expression is indeed positive.

(12.3h) [NPDE, § 6.1.42] presents the linear system of equations for the increments of an s-
stage Runge-Kutta method when applied to the semi-discrete evolution (12.3.2). State this linear
system explicitly in block form for the special case of the SDIRK-2 method.

Solution: Formulas [NPDE, Eq. (6.1.43)] gives us two equations systems which we have to
solve for the unknown vectors k1, ks

Mk1 + T)\Akl = —AIM,
Mk, + 7(1 — \)Ak; + 7AAky = —Ap.

Then [NPDE, Eq. (6.1.44)] gives us an update formula for p
Llj+1 = Hj -+ Tk’l(]_ — /\) —+ 7']{32)\.

(12.3i) Write a method

template <class Function>
void solve(Vector & U, Function const& c);

in EvSolver that carries out m uniform timesteps of the in order to solve (12.3.1) over the time in-
terval [0, 1]. The finite element Galerkin discretization from subproblem (12.3d) is used in space.
The argument U is a column vector that passes the values of the initial temperature distribution in

Problem Sheet 12 Page 15 Problem 12.3

the vertices of the mesh. The return value provides the basis coefficients of the approximation of

u(+, 1) of w at ¢ = 1. This function will be called within the main.

HINT: From [NPDE, Def. 6.1.39] and [NPDE, Eq. (6.1.41)] it should be clear how to obtain
the linear systems of equations [NPDE, Eq. (6.1.43)], [NPDE, Eq. (6.1.44)] for the Runge-Kutta

increments.
Solution: See Listing 12.8.

Listing 12.8: Implementation of solve ()

o |template <class DofHandler>
¢ |template <class Function>

e | void EvSolver<DofHandler >::solve (Vector &U, Function const& c¢){

69
70 // compute triplets for m and a.

71 Triplets tripletsA, tripletsM;

7 computeTriplets_(c, tripletsA, tripletsM);

73

74 // compute auxiliary matrix M + tauxlambda+A from SDIRK-2 system

75 // on triplets level

76 Triplets auxtrip;

77 //int offset = N;

78 for (auto & itA : tripletsA)

79 auxtrip .push_back({itA.row(), itA.col(), lambdaxTauxitA .value()});

80 for (auto & itM : tripletsM)

81 auxtrip.push_back({itM.row (), itM.col (), itM.value() });

82

83 Matrix auxM(N, N);

84 auxM.setFromTriplets (auxtrip.begin (), auxtrip.end());

85 auxM . makeCompressed () ;
86
87 // RK coefficients

88 std ::vector<double> b = {1—lambda, lambda};
89
90 // Assemble a’s Galerkin Matrix (for RHS)
91 Matrix A(N,N);

9 A.setFromTriplets (tripletsA .begin(), tripletsA.end());

03 A.makeCompressed () ;
94

95 E[0] = average_(U);

96 for(int i = 0; i <m; i++){

97 // create RHS

98 Vector L = —AxU;

9 // create first increment vector

100 Vector k1 = L/auxM;

101 // substitute in RHS for second increment
102 L = L — Taux(1—lambda) xAxk1 ;

103 // create second increment vector

104 Vector k2 = L/auxM;

105 // Update solution

106 U += Taux(b[0]xk1 + b[1]xk2);

107 E[i+1] = average_(U);

108 std::cout << "Time iter #” << i+1 << "\n”;
109 }

110 }

Problem Sheet 12 Page 16

Problem 12.3

(12.3j) In EvSolver, implement a method

double average_(Vector const& U);

that computes [, u da for u € SP(M). The argument U passes the coefficients of u w.r.t. the
standard nodal basis of S?(M).

HINT: Your implementation for subproblem (7.3a) might be useful.
Solution:

Listing 12.9: Implementation of average_()

31 |template <class DofHandler>

12 |double EvSolver<DofHandler >::average_(Vector const& U){

133 double total = 0.0;

134 // Traverse the cells using EntityIterator of co-dimension 0

135 for (auto eit = gv.template begin<0>(); eit != gv.template end<0>();
++eit){

136 // get element’s geometry

137 auto const& egeom = (xeit).geometry() ;

138 double f_int = 0.0;

139 for (int i = 0; i<egeom.corners(); i++){

140 // get global index of current vertex

141 auto global_id = dofh(xeit, i);

142 // get coefficient corresponding to given dof

143 auto f_val = U[global_id];

144 // add contribution

145 f_int+= 1.0/egeom.corners () *f_valx«egeom.volume() ;

146 }

147 total += f_int;

148 } // end traversing grid cells

149 return total;

150 | }

(12.3k) For the evolution problem (12.3.1) on 2 = (0, 1)? track the behavior of the thermal
energy

E(t) = / u(zx,t) de (12.3.11)

Q
over the period [0,7] for u9 = 1, v = 1. Use the fully discrete evolution implemented in
EvSolver::solve() and extend it, so it also computes approximations for E(t;) for k = 0,...,m

(), are the points of the equidistant temporal grid). Then implement a method Vector getE() which
returns a Vector E containing said approximations.

Complete main. cc tocompute u(x,t) fort = 1 for the mesh supplied in the file square_32.msh.
Make a plot of u for ¢ = 0 and ¢t = 1 using Paraview. Plot the approximation for £(¢) that you
have computed as a function of ¢ for m = 100.

HINT: The plot for E is depicted in Figure 12.2.

Solution:

The field plots at ¢t = 0 and ¢t = 1 are displayed in Figure 12.3. For the addition to RadTEv1 see
Listing 12.8, for the implementation of main. cc see Listing 12.10.

Problem Sheet 12 Page 17 Problem 12.3

35
36
37
38
39
40
41
42

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

o o o o
(o)} ~ [ee] o =
T T T T
1 1 1 1

Thermal energy E(t)
o o
P
T T
1 1

o
w
T
1

0.2 .

0.1 .

0 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time t

Figure 12.2: Result of subproblem (12.3k)

Listing 12.10: Implementation of average_ ()

int main(int argc, char sxargv[]){

try {
// load the grid from file
std :: string fileName = "square 32.msh”;

// Declare and create mesh using the Gmsh file

Dune :: GridFactory<GridType> gridFactory;

Dune :: GmshReader<GridType >::read(gridFactory , fileName.c_str (), false,
true) ;

std :: unique_ptr<GridType> workingGrid (gridFactory.createGrid());

workingGrid—loadBalance () ;

// Get the Gridview
GridView gv = workingGrid—leafGridView () ;

// Initialize dof-handler
DofHandler dofh(gv);

unsigned N = dofh.size () ;
std ::cout << "Solving for N =’

3 ”

<< N << 7 unknowns.\n";

// initialize evolution solver (SDIRK-2) using m = 100
EvSolver<DofHandler> solver(dofh, 100);

Vector U(N); U.setOnes () ;

solver.solve (U, [](Coordinate const& x){return 1.0;});
Vector E = solver.getE();

// Write solutions to vtk format
Dune:: VTKWriter<GridView> vtkwriter(gv);
std ::stringstream outputName;

outputName << ”"solution”;

Vector UO(N); UO.setOnes() ;

Problem Sheet 12 Page 18 Problem 12.3

66
67
68
69
70
71
72
73
74
75
76

8
8
g
g
&
8

mammmimrmulmg

ooooooo

(a) Initial distribution at t = 0 (b) Final distribution at t = 1
Figure 12.3: Initial and Final distribution for subproblem (12.3k).
vtkwriter.addVertexData (U0, “u_initial(x)”);

vtkwriter.addVertexData (U, "u_final(x)");
vtkwriter.write (outputName. str () .c_str());

£
MML\mHmlwwmi\mm%

°
8

zzzzzzz

std :: ofstream outE("Et.dat”, std::ios::out | std::ios::binary);

outE << E;
outE.close();

std ::cout << "Done.\n”;

Published on 13.05.2015.
To be submitted on 20.05.2015.

References

[NPDE] Lecture Slides for the course “Numerical Methods for Partial Differential Equa-

tions”.SVN revision # 76119.

[NCSE] Lecture Slides for the course “Numerical Methods for CSE”.

Last modified on May 28, 2015

Problem Sheet 12 Page 19

References

http://www.sam.math.ethz.ch/~hiptmair/tmp/NPDE/NPDE15.pdf
http://www.sam.math.ethz.ch/~hiptmair/tmp/NumCSE11_ext.pdf

	Problem Sheet 12
	12.1 Radau-3 Timestepping (Core)
	12.2 Decaying Solution by Implicit Euler Timestepping (Core)
	12.3 Radiative Cooling

