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Problem 13.1 The One-Dimensional Wave Equation (Core problem)

[NPDE, Section 6.2.2] introduced the one-dimensional wave equation with constant coefficients

as a simple model for wave propagation. There, in [NPDE, § 6.2.20], we examined the so-called

Cauchy problem, for which the spatial domain is the whole real line. In this problem we return

to a bounded spatial domain and impose non-homogeneous Dirichlet boundary conditions that

depend on time. F

The 1D wave equation with constant coefficients reads

d2u

dt2
− c

d2u

dx2
= 0, on (0, 1)× (0, T ) . (13.1.1)

The partial differential equation is supplemented with Dirichlet boundary conditions and zero

initial conditions

u(0, t) = 0, u(1, t) =

{

sin t 0 ≤ t ≤ π,

0 otherwise,

u(x, 0) = 0,
du

dt
(x, 0) = 0.

This initial-boundary value problem can be tackled numerically using the method of lines, see

[NPDE, Section 6.2.3], which, intermittently, leads to the ODE

M
d2u

dt2
~µ+A~µ = ~ϕ(t), (13.1.2)

for the time-dependent coefficient vector ~µ = ~µ(t) associated with a spatial Galerkin discretiza-

tion.

In this task we focus on finite element Galerkin discretization with piecewise linear Lagrangian

finite elements on equidistant meshes, see [NPDE, Section 1.5.2.2].

The non-homogeneous Dirichlet boundary condition at x = 1 can be taken into account through

the use of a locally supported offset function as explained in [NPDE, Rem. 1.5.80], see also

[NPDE, Section 3.6.5].

(13.1a) Compute the stiffness matrix A and the mass matrix M using the trapezoidal rule

[NPDE, Eq. (1.5.72)] to evaluate the integrals.

HINT: The mass matrix will be diagonal, because the use of this particular quadrature formula

effects “mass lumping” [NPDE, Rem. 6.2.45]. The stiffness matrix has already been computed

in [NPDE, Section 1.5.2.2].
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(13.1b) Find a piecewise linear, time-dependent, and locally supported offset function g, which

we can used to incorporate the nonhomogenous Dirichlet boundary condition into the semi-

discrete problem.

HINT: [NPDE, Rem. 1.5.80] with additional dependence on time.

(13.1c) What is the right-hand side of the ordinary differential equation (13.1.2) arising from

the method of lines?

HINT: The right-hand side will involve the offset function found in subproblem (13.1b).

(13.1d) Write a MATLAB function

U = wave(N, K, T, c)

that solves (13.1.1) with the method just described, with N interior nodes in space, K timesteps and

final time T, and returns the results in a (N + 2)× (K + 1)-matrix U. Use leapfrog timestepping

from [NPDE, § 6.2.43], in particular [NPDE, Eq. (6.2.44)] and do not forget the special initial

step.

(13.1e) Run your code with N = 100, K = 2000, T = 7 and c = 1. Plot the solution

continually (MATLAB command drawnow) while solving (use the MATLAB pause command

to slow down or halt execution so that you can actually see the “movie”).

HINT: For debugging purposes: the value of the solution at point (50, 2000) should be 0.0761.

(13.1f) As in [NPDE, Exp. 6.2.46], plot the (discrete) elastic, kinetic and total energies as a

function of time.

HINT: Formulas are given in [NPDE, Section 6.2.4]. In particular, [NPDE, Code 6.2.48] may be

useful.

(13.1g) Describe the behavior of the solution computed in subproblem (13.1e) in qualitative

terms related to “wave propagation”.

Problem 13.2 Crank-Nicolson Timestepping (Core problem)

In this problem we conduct some analysis of a two-step timestepping scheme for the semi-discrete

wave equation.

As an alternative to leapfrog timestepping, for the typical method of lines ODE for wave propa-

gation problems, see [NPDE, Section 6.2.3],

M~̈µ+A~µ = ~ϕ(t),

one may use the Crank-Nicolson method, in analogy to [NPDE, Eq. (6.2.41)] written as

M
~µ
(j+1)

− 2~µ
(j)

+ ~µ
(j−1)

τ 2
=

−A

(

1

4
~µ
(j+1)

+
1

2
~µ
(j)

+
1

4
~µ
(j−1)

)

+
1

4
~ϕ(tj+1) +

1

2
~ϕ(tj) +

1

4
~ϕ(tj−1). (13.2.1)
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As was done for leapfrog in [NPDE, § 6.2.43], it can also be formulated as a single-step method,

~µ
(j+1)

− ~µ
(j)

τ
=

1

2

(

~ν
(j+1)

+ ~ν
(j)
)

, (13.2.2)

M
~ν
(j+1)

− ~ν
(j)

τ
= −A

~µ
(j+1)

+ ~µ
(j)

2
+

~ϕ(tj+1) + ~ϕ(tj)

2
. (13.2.3)

(13.2a) Show that (13.2.1) is equivalent to (13.2.2)–(13.2.3), i.e., they both give the same

recursion for ~µ
(j)

.

(13.2b) Show that (13.2.2)–(13.2.3) conserves the discrete energy,

Ej =
1

2
(~ν

(j)
)⊤M~ν

(j)
+

1

2
(~µ

(j)
)⊤A~µ

(j)
.

HINT: Take the scalar product of (13.2.2) with 1
2
A
(

~µ
(j)

+ ~µ
(j+1)

)

, and of (13.2.3) with 1
2

(

~ν
(j)

+ ~ν
(j+1)

)

,

and then add them together.

Problem 13.3 Wave Equation with Perfectly Matched Layers

As in [NPDE, § 6.2.20] we consider Cauchy problem for the 1D wave equation (on the unbounded

domain Ω = R):

∂2u

∂t2
−

∂

∂x

(

c2(x)
∂u

∂x

)

= 0 on Ω× (0, T ),

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = v0(x), on Ω,

(13.3.1)

where

c(x) = 1 for x ≥ 1, x ≤ −1, and supp(u0), supp(v0) ⊂ ]− 1, 1[.

We are only interested in that part of the solutions of (13.3.1) that lies inside [−1, 1].Nevertheless

we can not simply restrict problem (13.3.1) to [−1, 1], for instance by imposing Dirichlet bound-

ary conditions, since reflected waves would completely supersede the solution of the Cauchy

problem after a short time. Such reflections could be seen in subproblem (13.1e).

Instead we have to use absorbing boundary conditions that let waves pass undisturbed. One

option are so-called perfectly matched layers (PML). This technique is based on introducing a

artificial material in a zone outside the region of interest that absorbes waves. In our example

these zones are [−1− L,−1] and [1, 1 + L].

The variational formulation of the PML augmented 1D wave equations then reads: seek u(t) ∈
H1(]− 1−L, 1+L[) and v(t) ∈ L2([−1−L, 1+L]) such that for all w ∈ H1(]− 1−L, 1+L[)
and q ∈ L2(]− 1− L, 1 + L[)

∫ 1+L

−1−L

∂u

∂t
w dx+

∫ 1+L

−1−L

σ(x)uw dx+

∫ 1+L

−1−L

v
∂w

∂x
dx =

∫ 1+L

−1−L

v0 w dx,

∫ 1+L

−1−L

∂v

∂t
q dx+

∫ 1+L

−1−L

σ(x)v q dx−

∫ 1+L

−1−L

c2(x)
∂u

∂x
q dx = 0,

(13.3.2)

with

σ =

{

0 −1 < x < 1

σ0 x < −1, x > 1, σ0 > 0
. (13.3.3)
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(13.3a) State the standard variational formulation of (13.3.1), if homogeneous Neumann bound-

ary conditions are imposed at x = ±1.

(13.3b) State the variational problem (13.3.2) for L = 0, which means that the absorbing layer

is ignored.

(13.3c) Show that the two variational formulations obtained in subproblem (13.3a) and subproblem (13.3b)

are equivalent, when one makes the substitution

v(x, t) = c(x)2
∫ t

0

∂u

∂x
(x, τ) dτ ⇔

∂v

∂t
= c(x)2

∂u

∂x
. (13.3.4)

HINT: Test the right equation in (13.3.4) with a function in L2(]− 1, 1[).

Now we tackle the full discretization of (13.3.2) and we pursue the method-of-lines policy. In

particular we resort to a Galerkin finite element discretization in space based on a on a mesh M
with N+1 equidistant nodes x0 := L−1 ≤ · · · ≤ xN := 1+L. Then, in (13.3.2), we replace the

space H1(]− 1−L, 1 +L[) with the space S0
1 (M) of piecewise linear continuous functions, see

[NPDE, § 1.5.61]. As trial and test space for L2(]−1−L, 1+L[) we choose the space S−1
0 (M) of

piecewise constant discontinuous functions on M. For both spaces we opt for the canonical local

supported nodal basis functions: “tent functions” according to [NPDE, Eq. (1.5.62)] for S0
1 (M),

and the characteristic functions of mesh cells for S−1
0 (M).

The resulting ODE system is discretized via a special variant of leapfrog timestepping, see

[NPDE, § 6.2.43]. In each timestep it leads to the following discrete variational equation:

∫ L+1

−1−L

u
(k+1)
N − u

(k)
N

∆t
wN dx+

∫ L+1

−1−L

σ
u
(k+1)
N + u

(k)
N

2
wN dx+

∫ L+1

−1−L

v
(k)
N

∂wN

∂x
dx

=

∫ L+1

−1−L

v0 wN dx,

∫ L+1

−1−L

v
(k+1)
N − v

(k)
N

∆t
qN dx+

∫ L+1

−1−L

σ
v
(k+1)
N + v

(k)
N

2
qN dx−

∫ L+1

−1−L

c2
∂u

(k+1)
N

∂x
qN dx = 0,

with uN , wN ∈ S0
1 (M) and vN , qN ∈ S−1

0 (M). This scheme will underly the implementation

requested in this problem.

(13.3d) Derive first the linear system of equations that has to be solved in each timestep. De-

scribe it using suitable Galerkin matrices and give formulas for their entries.

HINT: The formulas are simple: recall [NPDE, Eq. (1.5.64)] and [NPDE, Eq. (1.5.69)] and make

use of the simplifications offered by the equidistant mesh.

(13.3e) Implement the scheme in main pml.m for the inital data given there.

(13.3f) As in subproblem (13.1f) , plot the (discrete) elastic, kinetic and total energies as a

function of time.

HINT: Formulas are given in [NPDE, Section 6.2.4]. In particular, [NPDE, Code 6.2.48] may be

useful.
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(13.3g) Describe the behavior of the solution computed in subproblem (13.3f) in qualitative

terms related to “wave propagation”.

Problem 13.4 Helmholtz Equation

So far we have almost always faced initial boundary value problems for the linear wave equation,

with the exception of the 1D Cauchy problem from [NPDE, § 6.2.20], where boundary conditions

did not occur. In this problem we learn about a situation, where we can drop initial conditions:

the time-periodic setting.

Now we consider the linear wave equation with homogeneous Dirichlet boundary conditions

∂2u(x, t)

∂t2
−∆u(x, t) = f(x, t) in Ω× R,

u(x, t) = 0, on ∂Ω× R,

(13.4.1)

on a bounded domain Ω ⊂ R
2, but for all times t ∈ R.

We assume a time-periodic excitation

f(x, t) = Re{f̂(x)eiωt}, (13.4.2)

with angular frequency ω > 0 (Re designated the real part). The function f̂ : Ω → C, f̂ ∈ L2(Ω),
is called the complex amplitude/phasor of f.

(13.4a) Show that

u(x, t) = Re{û(x)eiωt}, (13.4.3)

solves the variational form of (13.4.1), if û ∈ H1(Ω) solves

−ω2û(x)−∆û((x) = f̂(x) in Ω,

û(x) = 0, on ∂Ω.
(13.4.4)

(13.4b) In class we learned that the hyperbolic evolution governed by (13.4.1) involves an

incessant conversion of elastic energy and kinetic energy given by

Eel(t) =
1

2

∫

Ω

‖grad u(x, t)‖2 dx, (13.4.5)

Ekin(t) =
1

2

∫

Ω

∣

∣

∣

∣

∂u(x, t)

∂t

∣

∣

∣

∣

2

dx (13.4.6)

Show directly, without appealing to [NPDE, Thm. 6.2.29], but using (13.4.5) and (13.4.6), that

for u = u(x, t) according to (13.4.3) and (13.4.4) the total energy is preserved.

(13.4c) Give a formula for the mean elastic and kinetic energy of u given by (13.4.3), that is,

express

Êel :=
1

T

∫ T

0

1

2

∫

Ω

‖grad u(x, t)‖2 dx dt, (13.4.7)

Êkin :=
1

T

∫ T

0

1

2

∫

Ω

∣

∣

∣

∣

∂u(x, t)

∂t

∣

∣

∣

∣

2

dx dt, (13.4.8)

in terms of suitable expressions for û, where T = 2π
ω

is the duration of one period.
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(13.4d) For Ω = {x ∈ R
2 : ‖x‖ < 1} and

f̂(x) =

{

cos2
(

2π
∥

∥

x−
(

0.5
0.5

)∥

∥

)

, if
∥

∥

x−
(

0.5
0.5

)∥

∥ < 1
4
,

0 elsewhere.

Implement a C++ code that solves (13.4.4) for ω = 10 using piecewise linear Lagrangian FE.

HINT: As usual, you are required to use your previous implementations of DofHandler,

MatrixAssembler, VectorAssembler, BoundaryDofs, and local assemblers, devel-

oped in subproblems 7.4, 8.1, and 8.2 (also available in the corresponding solution folders).

Now we reduce the homogeneous boundary condition in (13.4.1) with a special boundary condi-

tion, the so-called first order absorbing boundary condition

gradu(x, t) · n(x) +
∂u

∂t
(x, t) = 0, on ∂Ω× R. (13.4.9)

(13.4e) Find a boundary condition for û in (13.4.4) such that, again, u = u(x, t) given by

(13.4.3) solves the wave equation from (13.4.1) and satisfies (13.4.9).

(13.4f) Modify your C++ code so that it can handle the boundary conditions from subproblem (13.4e).

Repeat the numerical experiment from subproblem (13.4d).

HINT: Observe here we are using complex numbers. This means you should be careful when

declaring the triplets type and slightly modify your implementation of LocalMass. You may

also use the templated class available in the lecture svn repository

assignments codes/assignment13/Problem4

Published on 20.05.2015.

To be submitted on 27.05.2015.
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