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Introduction. This problem sheet collects a few rather complex problems involving both theoret-

ical and C++ implementation parts. They all have a concrete application background and touch

on various topics addressed during the course. So they are very well suited to test one’s skills

when preparing for the main examination on August 22, 2015.

Problem 14.1 Far field computation

In [NPDE, Section 5.6.1] we discussed the convergence of linear output functionals. More pre-

cisely, by means of duality techniques, one can prove that the convergence of the functional is of

one order higher than the convergence of the solution in the energy norm ([NPDE, Thm. 5.6.7]).

In [NPDE, Section 5.6.2], the computation of heat boundary flux was considered and it was

demonstrated how a modification of an output functional can render it continuous with respect

to the energy norm, which is an essential prerequisite for applying the duality argument. In

this problem, we pursue a similar policy for the computation of another linear output functional,

which is important in the simulation of electromagnetic waves.

This problem focuses on time-harmonic wave propagation in linear media. As in Problem 13.4,

in this case all time-dependent fields can be represented as

U(x, t) = Re(u(x) exp(iωt)) , (14.1.1)

where u(x) ∈ C is a complex amplitude, ω > 0 stands for the so-called angular frequency,

and Re extracts the real part of a complex number. All equations will be equations for complex

amplitudes, from which the actual wave can be recovered by (14.1.1). Hence, in this problem, all

unknowns will be complex valued. The file Pardiso.hpp in the repository has been modified

so that it can also handle complex-valued matrices and vectors.

Note: If you work on a local copy of the NPDE library, you must substitute your old Pardiso.hpp

header with the new one.

The propagation of the so-called TE-mode (TE for transverse electric) of an electromagnetic wave

and its interaction with an (infinitely long and straight) penetrable scatterer can be described by

the following two-dimensional second-order elliptic boundary value problem for the complex

amplitude u of the axial component of the electric field:

−∆u− k2(x)u = f in D ⊂ R
2 ,

grad u · n + ikdu = 0 on ∂D .
(14.1.2)
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Here, i is the imaginary unit, D ⊂ R2 an artificially truncated bounded computational domain,

and the piecewise constant discontinuous coefficient k(x) is the wave number, given by

k(x) =

{
ks, for x ∈ S ,

kd, for x ∈ D \ S ,
ks, kd > 0 . (14.1.3)

In the following, we use the concrete values ks =
√
2k0, kd = k0, k0 =

2π
3

.

The bounded sub-domain S ⊂ D is the space occupied by the scattering object, see Figure 14.1.

The source function f = f(x) is given by

f(x) = (k2(x)− k2d)ui(x) , (14.1.4)

with the so-called incident wave

ui(x) = eikdx1 , (14.1.5)

a plane wave impinging from the right, see Figure 14.1.

Remark: The solution u of (14.1.2) represents the so-called scattered field, that is, the perturba-

tion of the incident field due to the presence of the scattering objects. The total field that can be

measured is described by the complex amplitude utot = u+ ui.

Remark: Actually the wave propagation problem is posed on the unbounded domain R
2, which,

however, is outside the scope of every mesh based discretization. Therefore, computations are

done on an artificially truncated domain D, and one tries to take into account the effect of the

discarded part of space R2 \D by means of so-called absorbing boundary conditions. The Robin

boundary condition in (14.1.2) is a simple variant of these.
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Figure 14.1: Arrangement for 2D scattering problem

Once the scattered field has been computed, the far field mapping F : H2(D) 7→ C∞(S1) is given

by

F (u)(x̂) =
eiπ/4√
8πkd

∫

Γ

u(y)(gradwx̂)(y) · nΓ(y)

− (grad u)(y) · nΓ(y)wx̂(y) dS(y) , x̂ ∈ S
1 . (14.1.6)
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with

wx̂(y) = exp(−ikdx̂ · y) , x̂ ∈ S
1, y ∈ R

3 . (14.1.7)

This means that the image of F is a function defined on the unit circle S1 = {x̂ ∈ R2 | ‖x̂‖ = 1}.

Here, Γ ⊂ D \ S is a simple closed path around the scatterer with (exterior) unit normal vector

field nΓ, see Figure 14.1. For fixed x̂ ∈ S1 u→ F (u)(x̂) is a linear output functional depending

on the solution of (14.1.2). The objective of this problem is to investigate its stable numerical

evaluation.

Remark: The far field F (us) represents the intensity of the scattered field at large distances

away S. The integral of |F (u)|2 over some part of the sphere tells us the power carried through

that sector by the wave coming back from S.

I. The first part of this problem is concerned with preparatory considerations about (14.1.2) and

the far field mapping.

(14.1a) State the variational formulation of (14.1.2) complete with appropriate function spaces.

HINT: The derivation is given in [NPDE, Ex. 2.9.6]. You simply ignore the fact that we deal

with C-valued functions. Also recall subproblem (13.4e).

(14.1b) Prove that, if f ≡ 0 in (14.1.2), then u(x) = 0 and grad u · n(x) = 0 for x ∈ ∂D.

HINT: Here you have to use complex conjugation z 7→ z at some point and that |u(x)|2 =
u(x)u(x). Test with a function depending on u and consider imaginary and real part of the

resulting equation separately.

The result in subproblem (14.1b) implies uniqueness of the solution to the variational problem

from subtask (14.1a). Indeed, if u1 and u2 are two solutions to the variational formulation that you

derived, then u2 − u1 satisfies the associated homogeneous equation. From subproblem (14.1b),

we have that u1 − u2 ≡ 0 and grad(u1 − u2) · n ≡ 0 on ∂D. Then, the so-called unique

continuation principle implies that u1 − u2 ≡ 0 in the whole D.

(14.1c) Explain why, for fixed x̂ ∈ S1, the functional u 7→ F (u)(x̂) is not continuous on

H1(D \ S).
HINT: You may appeal to the result presented in [NPDE, § 5.6.13].

II. In the second part of this problem we devise a finite element discretization of (14.1.2) based

on the linear Lagrangian finite element space S0
1 (M), where M is a triangular mesh of D, which

is compatible with ∂S in the sense that ∂S is represented by a closed polygon ∂SN consisting of

edges of M. This permits us to associated every cell of M with either S or D \ S, depending on

which side of ∂SN it is located.

The location of mesh cells is encoded in a vector of integers ElemFlag. Each subdomain has a

flag, namely the flag 1 is associated to D \ S, and the flag 2 is associated to S. Then the vector

ElemFlag has length equal to the number of elements and

ElemFlag[k]==1 ⇔ mesh cell with global index k belongs to D \ S .
ElemFlag[k]==2 ⇔ mesh cell with global index k belongs to S . (14.1.8)

Throughout we are going to use the standard tent function basis of S0
1 (M).
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(14.1d) We want to implement a class representing the wave number −k2 = −k2(x), x ∈ D,

with k as given in (14.1.3). To that end, complete the class

t emp late <c l a s s GridView>

c l a s s KappaFunc{
p u b l i c :

u s in g c a l c t =double ;

KappaFunc( GridView c o n s t& gv , s td : : vector<i n t> c o n s t& ElemFlags ,

c a l c t ks sq , c a l c t kd sq )

: i d se t ( gv . indexSet ( ) ) , ElemFlag ( ElemFlags ) , ks sq ( ks sq ) ,

kd sq ( kd sq ) {}

t emp late <c l a s s Element>

c a l c t op erator ( ) ( Element c o n s t& e ) c o n s t {

}

p r i v a t e :

typename GridView : : IndexSet c o n s t& i d se t ;

s td : : vector<i n t> c o n s t& ElemFlag ;

c a l c t ks sq , kd sq ;

} ;

contained in the header KappaFunc.hpp, implementing the method

t emp late <c l a s s Element>

c a l c t op erator ( ) ( Element c o n s t& e ) c o n s t

that, given an element, computes the value of −k2 = −k2(x) (we assume that the value of k
cannot change inside an element).

HINT: Use the information contained in the vector ElemFlag.

(14.1e) Due to the boundary condition in (14.1.2), we also to evaluate k = k(x) on the bound-

ary, that is for x ∈ ∂D. To this aim, complete the class

c l a s s KappaBdFunc{
p u b l i c :

u s in g c a l c t =double ;

KappaBdFunc( c a l c t kd sq )

: kd sq ( kd sq ) {}

t emp late <c l a s s Element>

std : : complex<ca l c t > op erator ( ) ( Element c o n s t& e ) c o n s t {

}

p r i v a t e :

c a l c t kd sq ;

} ;
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contained in the header KappaFunc.hpp, with the implementation of the method

t emp late <c l a s s Element>

c a l c t op erator ( ) ( Element c o n s t& e ) c o n s t

that, given an element, computes the value of k = k(x). This function will be called only to

evaluate k boundary edges, so you don’t have to make the distinction made in (14.1.3).

(14.1f) We now implement a class for the source function f = f(x) as defined in (14.1.4). For

this, complete the class

t emp late <c l a s s GridView>

c l a s s LoadFunc{
p u b l i c :

u s in g c a l c t =double ;

LoadFunc( GridView c o n s t& gv , s td : : vector<i n t> c o n s t& ElemFlags ,

c a l c t ks sq , c a l c t kd sq )

: i d se t ( gv . indexSet ( ) ) , ElemFlag ( ElemFlags ) , ks sq ( ks sq ) ,

kd sq ( kd sq ) {}

t emp late <c l a s s Coordinate , c l a s s Element>

std : : complex<ca l c t > op erator ( ) ( Coordinate c o n s t& x , Element

c o n s t& e ) c o n s t {
}

p r i v a t e :

typename GridView : : IndexSet c o n s t& i d se t ;

s td : : vector<i n t> c o n s t& ElemFlag ;

c a l c t ks sq , kd sq ;

} ;

with the implementation of the method

t emp late <c l a s s Coordinate , c l a s s Element>

std : : complex<ca l c t > op erator ( ) ( Coordinate c o n s t& x , Element

c o n s t& e ) c o n s t

that computes the source function in the point with coordinates contained in x and belonging to

the element e.

HINT: Use again the information contained in the vector ElemFlag.

(14.1g) Complete the file main.cc, provided in the handout, to compute the finite element

solution of (14.1.2)–(14.1.5) and write it in a vtk file.

HINT: Of course you should make use of the functions coded in the previous sub-problems.

HINT: For the local mass matrix, both on the domain and on the boundary, you can use the class

LocalMassFarfield from the file LocalMassFarfield.hpp given in the handout. This class is a slight

modification of the class LocalMass contained in the folder local/ of the npde15 library.

HINT: To assemble the right-hand side, use the class LocalFunctionFarfield contained

in the header LocalFunctionFarfield.hpp, which is a slight modification of the function
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LLocalFunction that you already used to solve the previous assignments. To assemble the

finite element matrix, use the routine MatrixAssembler.hpp contained in the folder of the

handout.

HINT: To select the boundary nodes, you can proceed as in the Radiative Cooling problem that

you solved in one of the previous assignments, using the class LBoundaryNodes.

III. This part of the problem examines the far field mapping (14.1.6) and its accurate evaluation.

This will demonstrate another application of the techniques presented in [NPDE, Section 5.6.2].

(14.1h) Refresh yourself on the “cut-off function trick” used to convert the boundary flux

functional to the form [NPDE, Eq. (5.6.15)]. Try to understand again, why this “manipulation” is

admissible.

(14.1i) Show that the function wx̂ from (14.1.7) satisfies

(−∆− k2d)wx̂ = 0 for all x̂ ∈ S
1 , (14.1.9)

where the Laplacian ∆ (→ [NPDE, Rem. 2.5.14]) acts on the independent variable y only.

(14.1j) In formula (14.1.6), Γ stands for any simple closed path around the scatterer. Show that

the far field mapping is independent of the path Γ, more precisely, that, for any fixed x̂ ∈ S1, you

get the same value for F (u)(x̂) (u a solution of (14.1.2)), no matter whether you use the paths Γ
or Γ2 drawn in Figure 14.1.

HINT: First prove, appealing to Green’s formula [NPDE, Thm. 2.5.9], that for smooth functions

u and w on a bounded domain Ω:
∫

Ω

∆uw − u∆w dx =

∫

∂Ω

grad u · nw − u gradw · n dS , (14.1.10)

where n is the outward pointing unit normal vector field on ∂Ω. Then apply this formula to

(14.1.6) for a suitable Ω (enclosed between the two paths) and make use of (14.1.9). Watch the

orientation of the normal vectors.

(14.1k) As in [NPDE, Section 5.6.2], we choose a cut-off function ψ ∈ C0(D\S)∩H1(D \ S)
satisfying

ψ
∣∣
∂D

= 1 , ψ∂S = 0 , gradψ bounded. (14.1.11)

Show that for u, w ∈ H1(D \ S) with (−∆− k2d)w = 0 in D \ S, we have

∫

∂D

u(y)(gradw)(y) · n(y) dS(y)

=

∫

D\S

u(y)ψ(y)k2dw(y) + grad(uψ)(y) · gradw(y) dy . (14.1.12)

HINT: Use Green’s formula [NPDE, Thm. 2.5.9].
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(14.1l) Show that for the far field mapping F (u) from (14.1.6) holds

F (u)(x̂) =
eiπ/4√
8πkd

∫

D\S

gradψ(y)(u(y) (gradwx̂)(y)− (grad u)(y)wx̂(y)) dy , (14.1.13)

for any x̂ ∈ S1, provided that u solves (14.1.2).

HINT: First switch to the integration path ∂D, using the result of sub-problem (14.1j). Then

apply (14.1.12) taking into account (14.1.9).

(14.1m) The result of the previous sub-problem suggests that we consider the modified far field

mapping

F ∗(u)(x̂) =
eiπ/4√
8πkd

∫

D\S

gradψ(y) · (u(y) (gradwx̂)(y)− (grad u)(y)wx̂(y)) dy .

(14.1.14)

Why is u 7→ F ∗(u)(x̂) for fixed x̂ ∈ S1 a continuous linear functional on the energy space

H1(D \ S)?

(14.1n) In the previous sub-problem we have seen that F ∗ is bounded on H1(D \ S). Well,

we can even do better, when choosing special cut-off functions, which satisfy, in addition to

(14.1.17),

ψ ≡ 1 close to ∂D , ψ ≡ 0 close to ∂S , ψ ∈ C2(D) . (14.1.15)

Show that for this choice

F ∗(u)(x̂) =
eiπ/4√
8πkd

∫

D\S

u(y)(gradψ(y) · (gradwx̂)(y) + div(wx̂ gradψ)(y)) dy .

(14.1.16)

Explain, why u 7→ F ∗(u)(x̂) is even bounded on L2(Ω), if (14.1.15) is satisfied.

HINT: Hardly surprising, an application of Green’s formula from [NPDE, Thm. 2.5.9] does the

trick.

(14.1o) For fixed x̂ ∈ S1 we consider the output error |F ∗(u)(x̂)− F ∗(uN)(x̂)|, where uN ∈
S0
1 (M) is the finite element solution introduced in Part II of the problem. Moreover, we assume

(14.1.15).

Establish what will be the asymptotic dependence of this output error on the meshwidth hM, if

ψ ∈ C2(D \ S) and

• both D and S are discs,

• and we deal with a family of triangular meshes whose shape regularity measures (→
[NPDE, Def. 5.3.36]) are uniformly small.

HINT: You may take for granted that polygonal boundary approximation does not affect the

asymptotic convergence for lowest order Lagrangian finite elements, cf. [NPDE, Section 5.5.2].

Then rely on [NPDE, Thm. 5.6.7], state the dual problem in strong form based on (14.1.16) and

use elliptic regularity theory from [NPDE, Thm. 5.4.2].
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(14.1p) Implement the function

t emp late <c l a s s GradPsiFunc>

complex t F a r f i e l d ( DofHandler c o n s t& dofh , GridView c o n s t& gv ,

Vector c o n s t& u , Coordinate c o n s t& p , c a l c t c o n s t& k ,

GradPsiFunc c o n s t& GradPsi )

to compute the far field in the point p of the unit sphere. We will use the stable formula (14.1.14)

for the far field.

The input argument k denotes the wavenumber for wx̂ and u is the vector containing the solution

u to Helmholtz equation.

As cut-off function we use

ψ(y) =
‖y‖2 − R2

in

R2
out −R2

in

, (14.1.17)

where Rout is the radius of ∂D and Rin the radius of ∂S.

The gradient ofψ = ψ(y) is implemented in the class GradPsiFunc, provided in the file GradPsiFunc.hpp

of the handout.

(14.1q) Modify the file main.cc implemented in task (14.1g) in order including the far field

computation at the current angle (the angles can be initialized at the beginning of the file).

Produce a plot of the absolute value of the far field.

(14.1r) Finally, we want to study the convergence of the far field mapping. Fixing a point

x̂ ∈ S1, we want to estimate the asymptotic behavior of |F ∗(u)(x̂) − F ∗(uN)(x̂)|, as stated

in subproblem (14.1o). Of course, as F ∗(u)(x̂) we consider (14.1.14), as in the previous sub-

problem. We have at our disposal the meshes, Helmholtz mesh1, . . . , Helmhotz mesh5,

ordered from the coarser to the finest one, and obtained by successive refinements. Since we don’t

have an analytical solution for the far field, we consider the discrete solution on the finest grid as

reference solution.

Adapt the file main.cc including the convergence study. Test the routine with some points in

the unit circle S1; which order of convergence do you observe?

Problem 14.2 Electrostatic Force (Part I)

A straight cylindrical wire is enclosed in a straight cylindrical conducting pipe as depicted in 14.2.

There is a voltage drop between both. If the axial extension of both wire and pipe is very long,

translational symmetry along the axis can be assumed, which allows two-dimensional modelling.

As explained in [NPDE, Section 2.2.2], the electrostatic potential u in the homogeneous space Ω
between the surface Γ1 of the wire and the inner wall Γ0 of the pipe, is given as the solution of

the 2nd-order elliptic boundary value problem

−∆u = 0 inΩ, (14.2.1)

with Dirichlet boundary conditions

u = 0 on Γ0, u = 1 on Γ1. (14.2.2)

Problem Sheet 14 Page 8 Problem 14.2



-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 14.2: The domain used in Problem 14.2

Of course, a suitable scaling is assumed that yielded the non-dimensional equation (14.2.1). In

this problem the use of a finite element method to compute the total attracting force between wire

and pipe approximately is explored.

Caution: In contrast to the cases discussed in class, the output functionals studied in this problem

are non-linear!

In the above model the electrostatic force on the wire can be computed from the potential u
according to

F (u) =
1

2

∫

Γ1

(grad u(x) · n(x)) gradu(x) dS (14.2.3)

To understand this formula recall E = −grad u, see [NPDE, Eq. (2.2.11)], and that E · n gives

the surface charge density on a conductor. Thus the integrand in (14.2.3) can be read as the force

density effected by the electric field “pulling at the surface charges”.

In order to obtain an analytical solution for u the following special geometric situation will be

considered. The pipe wall Γ0 is a circle centered in (4/15, 0) with radius 2/3, and the wire

boundary Γ1 is a circle centered in the origin, with radius 4/15.

(14.2a) Show that the solution to (14.2.1)-(14.2.2) is

u(x) =
1

log 2
(log‖x− a‖ − log‖x− b‖)− 1 (14.2.4)

where a = (−16/15, 0) and b = (−1/15, 0) are the positions of the point charges.

HINT: You may use a MATLAB or C++ code to verify that the boundary conditions are satisfied.

Alternatively, you may appeal to the Apollonius circle theorem that you may have heard about in
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secondary school.

(14.2b) Compute the force between wire and pipe for the exact solution found in subproblem (14.2a)

HINT: Exact computation is tedious. Therefore, you may use “overkill” numerical quadrature

(e.g. trapezoidal rule with 106 points) within a MATLAB or C++ code to obtain a good approxi-

mation for the exact value of the force functional. The gradient of u is

gradu(x) =
1

log 2

(
x− a

‖x− a‖2
− x− b

‖x− b‖2
)
.

HINT: You should obtain the force value F = (13.0776, 0).

(14.2c) Complete main.cc in order to solve (14.2.1)-(14.2.2) using a linear Lagrangian finite

element method.

HINT: Use your already implemented classes DofHandler, MatrixAssembler,VectorAssembler,

BoundaryDofs, and local assemblers, developed in the previous assignments (also available in

the corresponding solution folders).

HINT: Use BoundaryDofs to find the indices of the boundary edges. Then, loop through each

boundary edge and check the norm of the vertices of that edge. If the norms are not much more

than 4/15, the edge is part of the inner boundary.

(14.2d) In main.cc add a function

t emp late <c l a s s Funct ion>

double L2Error ( DofHandler dofh , Vector c o n s t& FN, Funct ion c o n s t&

Fex )

which calculates ‖Fex − FN‖L2(Ω) when given the DofHandler dofh, the coefficient vector FN

associated to the finite element function FN , and Fex given in procedural form.

Use it to compute and plot approximate L2-errors ‖u− uN‖L2(Ω) for the given sequence of

meshes in terms of the meshwidth or the number of degrees of freedom. Which type of con-

vergence do you (and should you in light of [NPDE, Section 5.6.3]) observe?

HINT: Types of convergence are defined [NPDE, Section 1.6.2]. The sequence of meshes is given

by Annulus i.msh, i=1..3 available in the repository folder.

Problem 14.3 Electrostatic Force (Part II)

In [NPDE, Section 5.6.1] we learned that we can expect enhanced rates of algebraic h-convergence

for continuous linear output functionals when evaluating them for finite element Galerkin solu-

tions of linear variational problems. We also saw in [NPDE, Section 5.6.2] for the example of

boundary flux functionals that switching to an equivalent continuous form of the functional can

bring about dramatic gains in accuracy.

In this problem we apply this policy to the non-linear electrostatic force functional from Problem 14.2.

We are going to replace the original force functional with an equivalent one that enjoys better con-

tinuity properties. This will be explored in numerical experiments.

(14.3a) Show that the functional u 7→ F (u) from (14.2.3) is not linear.
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(14.3b) Complete the function

Dune : : F ie ldVecto r<double ,2> Force ( DofHandler c o n s t& dofh , GridView

c o n s t& gv , Vector c o n s t& U)

(in the handout file Force.hpp) that returns the force functional F (u) from (14.2.3) for a finite

element solution uN ∈ S0
1 (M), where information on the triangular mesh data structure and

boundary nodes are contained in dofh and gv. The vector U passes the nodal basis expansion

coefficients of a finite element function.

HINT: This subproblem requires you to compute normals of edges on the (inner) boundary. To get

them, you can use the method unitOuterNormal contained in the Dune::Intersection

class.

HINT: Formula (14.2.3) requires integration only on part of the boundary (Γ1). To select the

correct boundary edges, proceed as you did in (14.2c) to set the boundary conditions.

The integrand can be evaluated exactly, so there is no need for quadrature.

(14.3c) Show that there are functions u ∈ H1(Ω) for which F (u) from (14.2.3) is not defined

(i.e. “F (u) = ∞”).

HINT: Examine [NPDE, § 5.6.13]. Try u(x) =
(
‖x‖ − 4

15

)α
for some suitably chosen α.

(14.3d) Prepare for the three given meshes ℓ = 1, 2, 3 a plot for the convergence in term of

F (uℓ). What (kind and rate) of convergence F (uN) → F (u) in terms of the meshwidth do you

observe?

HINT: You can solve this task updating the file main.cc from Problem 14.2 with the computa-

tion of the force.

(14.3e) According to subproblem (14.3c) it might be possible to encounter infinitely large elec-

trostatic forces attracting the wire towards the pipe. Why will this never be observed?

(14.3f) [NPDE, Section 5.6.2] strikingly demonstrated the benefit of replacing an unbounded

linear output functional with an equivalent bounded one. By subproblem (14.3c) the output func-

tional F from (14.2.3) may be haunted by the same problems as [NPDE, Eq. (5.6.11)], though

it is non-linear. Thus, it may pay off to reformulate (14.2.3) in a form F̃ that is continuous on

H1(Ω), and which agrees with F for all solutions of (14.2.1).

Show that, for all x ∈ Γ1, we have

1

2
(gradu(x) · n(x)) grad u(x) = T (u)(x) · n(x),

where T is the so-called Maxwell stress tensor

T (u)(x) = gradu(x) · grad u(x)⊤ − 1

2
‖gradu(x)‖2 · I ∈ R

2,2 ,

where I is the 2× 2 identity matrix.

HINT: If u is constant on Γ1, grad u will be parallel to n there.

(14.3g) Show that if u solves (14.2.1), then

divT (u)(x) = 0
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for all x ∈ Ω. Here, div is row-wise divergence, i.e. it takes the divergence of each row Ti of the

matrix T (regarded as a vector) and returns a vector:

div

(
t11(x) t12(x)
t21(x) t22(x)

)
=




∂t11
∂x1

(x) +
∂t12
∂x2

(x)

∂t21
∂x1

(x) +
∂t22
∂x2

(x)


. (14.3.1)

(14.3h) Show that if u solves (14.2.1), then

F (u) = F̃ (u) :=

∫

Ω

T (u)(x) gradΨ(x) dx, (14.3.2)

where Ψ ∈ C∞(Ω) satisfies Ψ(x) = 1 on Γ1 and Ψ(x) = 0 on Γ0.

HINT: First, show that F (u) =
∫
∂Ω

ΨT · n dS, and then use Gauss’ theorem (the divergence

theorem, [NPDE, Thm. 2.5.7]). Be inspired by the derivation of [NPDE, Eq. (5.6.15)].

(14.3i) Show that F̃ (v), defined in (14.3.2), is is bounded for all v ∈ H1(Ω), that is

|F̃ (v)| ≤ C|v|2H1,

where C does not depend on v.

(14.3j) Code the function

Dune : : F ie ldVecto r<double ,2> ForceStable ( DofHandler c o n s t& dofh ,

GridView c o n s t& gv , Vector c o n s t& U)

(in the handout file ForceStable.hpp) that implements the force functional F̃ (u) from (14.3.2).

HINT: Use Ψ = uex (the exact solution from (14.2.4)) and the three-point local quadrature rule

that relies on the midpoints of the edges of a triangle.

(14.3k) Compute and plot the errors F̃ (uN)−F (u) for the given meshes, describe the observed

convergence in terms of the meshwidth and cpompare with subproblem (14.3d).

HINT: Again, modify the file main.cc from Problem 14.2.

Problem 14.4 Least-Squares Galerkin Discretization

On a bounded polygon Ω ⊂ R2 we consider the stationary linear advection problem

v(x) · gradu = f in Ω,

u = g on Γin := {x ∈ ∂Ω | v(x) · n < 0}, (14.4.1)

where v : Ω 7→ R2 is a given continuous velocity field, f ∈ C0(Ω) a source term, and g ∈ C0(Γin)
boundary values for the unknown u on the inflow boundary Γin.

The so-called least squares variational formulation of (14.4.1) boils down to a linear variational

problem

u ∈ V : a(u, w) = ℓ(w) ∀w ∈ V, (14.4.2)

with

a(u, w) := 〈v · gradu, v · gradw〉L2, ℓ(w) := 〈v · gradw, f〉L2 . (14.4.3)

Problem Sheet 14 Page 12 Problem 14.4



(14.4a) Specify an appropriate function space V for the least squares variational formulation.

HINT: The Dirichlet boundary conditions in (14.4.1) should be treated as essential boundary

conditions.

(14.4b) The least squares variational formulation (14.4.2) is equivalent to a minimization prob-

lem for a functional J of the form

J(u) := ‖T (u, f)‖2L2(Ω), (14.4.4)

where T is an expression involving the functions u and f . What is T (u, f) in concrete terms.

(14.4c) Consider the linear 2nd-order scalar elliptic boundary value problem

− div(A(x) gradu) = f in Ω,

u = g on Γin,

(A(x) gradu) · n = 0 on ∂Ω \ Γin,

(14.4.5)

where A : Ω 7→ R2×2 is a continuous matrix-valued function with A(x) = A(x)⊤ for all x ∈ Ω.

Which choice of A makes the bilinear forms of the standard (i.e. not least squares) variational

formulation of (14.4.5) and the variational problem (14.4.2) agree?

HINT: For the standard variational formulation of (14.4.5), see [NPDE, Eq. (2.4.5)].

(14.4d) Implement the class LocalLaplace which provides a method

t emp late <c l a s s Element>

void op erator ( ) ( Element c o n s t& e , ElementMatr ix & l o c a l ) c o n s t

to compute the element matrix associated to the bilinear form for (14.4.5) using linear Lagrangian

finite elements and Dune::QuadratureRule<calc t, elem dim>.

HINT: Implementation of LocalMass in subproblem (8.1e) and LocalLaplaceFromVector

in subproblem (8.2c) might be useful.

HINT: Keep in mind the constructor LocalLaplaceC(Function const& q) takes a function q in

procedural form which returns a 2× 2-matrix.

(14.4e) In main.cc write a method

t emp late < c l a s s VectorFunct ion , c l a s s Funct ion >

void solveAdvBVP ( DofHandler c o n s t& dofh , VectorFunct ion c o n s t& v ,

Funct ion c o n s t& g , Vector & U)

that solves (14.4.1) in the case f ≡ 0 by means of the least squares Galerkin approach based

on the variational formulation (14.4.2) and piecewise linear Lagrangian finite elements. The

argument v provides the velocity field in procedural form. This function should return a column

vector ∈ R2. The g-argument is also given in procedural form and passes the real valued function

g. The Vector U is filled with the obtained solution.

(14.4f) Complete the class

t emp late <c l a s s Funct ion , c l a s s VectorFunct ion>

LocalFunctionLSQ ( Funct ion c o n s t& f , VectorFunct ion c o n s t& v )
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by writing the method

t emp late <c l a s s Element , c l a s s Vector>

void op erator ( ) ( Element c o n s t& e , Vector & l o c a l ) c o n s t

that computes the right-hand side vector for the variational problem (14.4.2), when piecewise

linear Lagrangian finite elements are employed for its Galerkin discretization.

The arguments v and f in the constructor, give the velocity field v and source term f in procedural

form, see subproblem (14.4e). Vertex based quadrature (2D trapezoidal rule) is to be used for

local computations.

HINT: Base your implementation on LocalFunction.

(14.4g) Assume g = 0. Code a method

t emp late < c l a s s VectorFunct ion , c l a s s Funct ion >

void solveAdvBVP LSQ ( DofHandler c o n s t& dofh , VectorFunct ion

c o n s t& v , Vector & U)

in main.cc, that computes the coefficient vector U of the least squares solution of (14.4.1)

obtained by a linear Lagrangian finite element Galerkin solution of the related least squares vari-

ational problem (14.4.2). The arguments have the same meaning as in subproblem (14.4f).

HINT: You may copy large parts of your implementation of solveAdvBVP from subproblem (14.4e).

Also use LocalFunctionLSQ.

HINT: For debugging, you may found the output test call out.txt corresponding to the

given file main.cc.
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