
R. Hiptmair
L. Scarabosio
C. Urzua Torres

Spring Term 2015

Numerical Methods for Partial
Differential Equations

ETH Zürich
D-MATH

Homework Problem Sheet 1

Problem 1.1 The Length of a Curve
This problem addresses techniques covered in [NPDE, Section 1.2.2], [NPDE, Section 1.2.3],
and [NPDE, Section 1.3.1]:

• Construction of a continuous “energy functional” from a discrete model by a continuum
limit

• Derivation of the variational equation satisfied by every minimizer of the “energy func-
tional”

If you do not remember these techniques well, please study the corresponding sections of the
lecture material before tackling this problem.

In [NPDE, Suppl. 1.2.5] we learned that the length of a curve described by a parametrization
u : [0, 1] 7→ R2 (a Cartesian coordinate system in the plane is taken for granted) is given by the
expression

ℓ(u) =

∫ 1

0

∥u′(ξ)∥ dξ . (1.1.1)

In this problem, we derive this formula from a “discrete curve model,” namely a polygonal ap-
proximation consisting of a union of line segments. This is similar in spirit to the derivation of the
elastic string potential energy from a mass-spring model, as carried out in [NPDE, Section 1.2.3],
but simpler in terms of calculus.

In the second part of this problem we will conduct of first empirical study of convergence. This
concerns the issue how close a discrete model with a finite dimensional configuration space is to
the continuum limit model.

(1.1a) We interpolate the curve by a polygon P (n), which is the union of the line segments

P (n) =
n∪

i=0

[u(ξ
(n)
i),u(ξ

(n)
i+1)]

where ξ
(n)
i = i

n+1
for i = 0, . . . , n+ 1. The total length of P (n) is

ℓ(P (n)) =
n∑

i=0

∥∥u(ξ(n)i)− u(ξ
(n)
i+1)
∥∥. (1.1.2)

Problem Sheet 1 Page 1 Problem 1.1

Derive (1.1.1) by means of a limiting process as n → ∞ under the smoothness assumption that
u ∈ C2([0, 1]).

HINT: Use Taylor expansion as in [NPDE, Eq. (1.2.39)].

Solution: Using Taylor expansion, we see that

u(ξ
(n)
i) = u(ξ

(n)

i+ 1
2

− h

2
) = u(ξ

(n)

i+ 1
2

) + u′(ξ
(n)

i+ 1
2

)(−h

2
) + u′′(ξ

(n)

i+ 1
2

)(−h

2
)2 +O(h3),

u(ξ
(n)
i+1) = u(ξ

(n)

i+ 1
2

+
h

2
) = u(ξ

(n)

i+ 1
2

) + u′(ξ
(n)

i+ 1
2

)(
h

2
) + u′′(ξ

(n)

i+ 1
2

)(
h

2
)2 +O(h3),

and subsequently ∥∥u(ξ(n)i)− u(ξ
(n)
i+1)
∥∥ = h

∥∥u′(ξ
(n)
i+1/2)

∥∥+O(h3),

where h = 1
n+1

. Inserting this in the sum yields

ℓ(P (n)) = h
n∑

i=0

∥∥u′(ξ
(n)
i+1/2)

∥∥+O(h2).

As n→∞, the higher-order term will vanish, and the rest can be seen as a Riemann sum. Thus

ℓ(u) = lim
n→∞

ℓ(P (n)) =

∫ 1

0

∥u′(ξ)∥ dξ.

(1.1b) Given a ∈ R2, b ∈ R2, let V stand for the affine space of curves with fixed endpoints

V :=
{
v ∈ (C1pw([0, 1]))2

∣∣v(0) = a, v(1) = b
}
.

Parallel to the developments of [NPDE, § 1.3.3], derive the variational equation satisfied by every
minimizer u∗ of ℓ(u) over V .

HINT: Use [NPDE, Eq. (1.3.5)] and proceed as in the derivation of [NPDE, Eq. (1.3.8)]. Do not
forget to specify the trial and test spaces.

Solution: Using the hint we have

∥u′ + tv′∥ = ∥u′∥+ t
u′ · v′

∥u′∥
+O(t2),

which, when integrated from ξ = 0 to ξ = 1 gives

ℓ(u+ tv) = ℓ(u) + t

∫ 1

0

u′ · v′

∥u′∥
dξ +O(t2).

So the directional derivative is

Dvℓ(u) =

∫ 1

0

u′ · v′

∥u′∥
dξ.

The variational formulation is then to find u ∈ V so that Dvℓ(u) = 0 for all v in the test space

V0 :=
{
v ∈ C1pw([0, 1])2

∣∣v(0) = v(1) = 0
}
.

Problem Sheet 1 Page 2 Problem 1.1

(1.1c) Show that the function

ξ 7→ (1− ξ)a+ ξb , 0 ≤ ξ ≤ 1 , (1.1.3)

satisfies the variational problem derived in sub-problem (1.1c).

Solution: This function has derivative u′ = b− a, so we get

Dvℓ(u) =
b− a

∥b− a∥
·
∫ 1

0

v′ dξ =
b− a

∥b− a∥
· (v(1)− v(0)) = 0.

(1.1d) Write a MATLAB function

function length = lengthP(u,n)

that computes the approximate length of a curve using (1.1.2). The argument u is a function
handle to the curve u : [0, 1] 7→ R2 and n is, as in (1.1.2), the number of internal points used for
the polygonal approximation of the curve.

The function u expects as input a parameter value ξ and returns the value of u in that point, that
is it returns u(ξ).

Solution: See Listing 1.1.

Listing 1.1: Code for lengthP.m
1 f u n c t i o n l e n g t h = lengthP(u,n)
2

3 xi = l i n s p a c e(0,1,n+2);
4 f o r i=1:n+1
5 d i f f(:,i)=u(xi(i))-u(xi(i+1));
6 end
7 l e n g t h = sum(s q r t(d i f f (1,:).ˆ2+ d i f f (2,:).ˆ2));

(1.1e) Consider the endpoints a = (0, 0)T and b = (1, 1)T , and the arc connecting them:

u(ξ) =

(
0
1

)
+

(
cos
(
ξ π
2
+ 3π

2

)
sin
(
ξ π
2
+ 3π

2

)), 0 ≤ ξ ≤ 1. (1.1.4)

We want to test numerically in this particular case that, as we have proved in subproblem (1.1a),
ℓ(P (n))→ ℓ(u) as n→∞, with ℓ(P (n)) as in (1.1.2).

Write a MATLAB script lengthcvg.m to perform a convergence study. To do this, consider
the values n = 2i, i = 2, . . . , 12, for the number of internal grid points, and for each of such
values compute the norm |ℓ(P (n)) − ℓ(u)|; for the curve (1.1.4) the exact length is ℓ(u) = π

2
.

Make a double logarithmic (loglog) plot of the computed norms versus the values n = 2i,
i = 2, . . . , 12. What do you observe? From the empirical data guess an expression in terms of n
to which the error is proportional.

Problem Sheet 1 Page 3 Problem 1.1

Figure 1.1: Plot for subproblem (1.1e).

REMARK. In [NPDE, Section 1.6] we will examine the error involved in discretization in more
details and we will learn about different types of convergence of this error, see [NPDE, Sec-
tion 1.6.2]. [NPDE, § 1.6.26] will discuss ways to tell the type of convergence from empiric
data.

Solution: See Listing 1.2 for the code and 1.1 for the loglog plot. The convergence is algebraic
with rate 1.9518 ≈ 2.

Listing 1.2: Code for lengthcvg.m
1 a=[0;0];
2 b=[1,1];
3 u=@(xi) [0;1]+[cos(xi*pi/2+3*pi/2); s i n(xi*pi/2+3*pi/2)];
4

5 norms = [];
6 length_exact = pi/2;
7 nvals=2.ˆ(2:12);
8

9 f o r n=nvals
10 lengthn = lengthP(u,n);
11 norms = [norms abs(lengthn-length_exact)];
12 end

(1.1f) If we repeat the convergence study of subproblem (1.1e) for the curve (1.1.3), than we
get an error norm of the order of 10−13 for all values of n. Try to explain such a behavior.

Solution: The curve is a line, so, for any value of n, its polygonal approximation coincides with
the curve itself and the error |ℓ(P (n))− ℓ(u)| is at maschine precision.

Listing 1.3: Testcalls for Problem 1.1
1 a=[0;0];
2 b=[1,1];

Problem Sheet 1 Page 4 Problem 1.1

3 u=@(xi)repmat([0;1],1, l e n g t h(xi))+[cos(xi*pi/2+3*pi/2);
s i n(xi*pi/2+3*pi/2)];

4

5 f p r i n t f(’\n##lengthP’);
6 ln=lengthP(u,10)

Listing 1.4: Output for Testcalls for Problem 1.1
1

2 >> test_call
3

4 ##lengthP
5 ln =
6

7 1.5695

Problem 1.2 Numerical Solution of Mass-Spring Model
In [NPDE, Section 1.2.2] we studied a mass-spring system meant to offer a discrete approxima-
tion of an elastic string, cf. [NPDE, Rem. 1.5.2]. This problem is devoted to a numerical method
for the solution of [NPDE, Eq. (1.2.22)], that is, the minimization of the total potential energy
J (n) := J

(n)
el + J

(n)
f with J

(n)
el from [NPDE, Eq. (1.2.18)] and J

(n)
f from [NPDE, Eq. (1.2.20)].

Thus, the equilibrium positions of the point masses can be determined.

For the solution of the unconstrained minimization problem [NPDE, Eq. (1.2.22)] we rely on a
so-called relaxation method. One after the other the point masses are moved to minimize the
potential energy. The positions of all other masses are kept fixed. Thus we cycle through all the
masses until no more substantial change of the potential energy is observed. Thus the global min-
imization problem is reduced to a sequence of two-dimensional minimization problems. Those
are solved by Newton’s method, that is, by finding a zero of the gradient of the energy functional
with respect to the position of a single mass.

(1.2a) Write a MATLAB function

function plotJ(u0,u1,kappa,l,f)

that plots the total potential energy of a mass-string model with n = 1 with respect to the position
of the single free mass. The column 2-vectors u0, u1 pass the fixed positions of the pinned ends.
Both springs are equal: the numbers kappa, l provide their spring constants and equilibrium
lengths, respectively. The column 2-vector f is the force acting on the free point mass.

Create a plot for the particular case when kappa and l are both equal to 1, the force f acts only
in the vertical direction and has a value equal to −1, while the pins are at position (0, 0) and
(1, 0.2), see also [NPDE, Ex. 1.2.23].

Solution: See Listing 1.5 for plotJ and Listing 1.6 for how to generate the plot in Figure 1.2.

Listing 1.5: Code for plotJ.m
1 f u n c t i o n plotJ(u0, u1, kappa, l, f)
2

Problem Sheet 1 Page 5 Problem 1.2

3 J = @(x,y) ((s q r t((x-u0(1)).ˆ2+(y-u0(2)).ˆ2)-l).ˆ2 +
(s q r t((x-u1(1)).ˆ2+(y-u1(2)).ˆ2)-l).ˆ2) * (kappa/(l*2))
- f(1)*x - f(2)*y;

4

5 xmin = min(u0(1),u1(1)) - 10;
6 xmax = max(u0(1),u1(1)) + 10;
7 ymin = min(u0(2),u1(2)) - 10
8 ymax = max(u0(2),u1(2)) + 10;
9

10 x = l i n s p a c e(xmin, xmax, 50);
11 y = l i n s p a c e(ymin, ymax, 50);
12 [x,y] = meshgrid(x,y);
13 j = J(x,y);
14

15 s u r f(x,y,j);
16

17 end

Listing 1.6: Code for plotJ main.m

1 kappa = 1;
2 l = 1;
3 f = [0;-1];
4 u0 = [0 0];
5 u1 = [1 0.2];
6

7 plotJ(u0, u1, kappa, l, f)
8

9 x l a b e l(’x’)
10 y l a b e l(’y’)
11 z l a b e l(’J(x,y)’)
12 %view([-0.1 -.7 1])

13 c o l o r b a r
14 a x i s tight
15

16 % setup papersize / font size for nicer printint (requires

separate fig_prepare.m)

17 conf.myFontsize = 13;
18 conf. s i z e = [700, 300];
19 fig_prepare(conf);
20 l egend off %h = legend; h = legend(h, ’Location’, ’best’);

21 saveas(gcf , ’plotJ’, ’epsc’)

(1.2b) Consider the function f : R2 → R, f(x) = 1
2
(||x|| − l)2. Compute the first and second

derivative of this function, that is, its gradient grad f(x) ∈ R2 and its Hessian Hf(x) ∈ R2×2.

Problem Sheet 1 Page 6 Problem 1.2

−10
−5

0
5

10

−10
−5

0
5

10
0

50

100

150

xy

J(
x,

y)

0

20

40

60

80

100

120

140

160

180

Figure 1.2: Plot of J(x, y).

HINT: The gradient and Hessian are defined in terms of partial derivatives by

grad f(x) =

(
∂f
∂x1

(x)
∂f
∂x2

(x)

)
, Hf(x) :=

(
∂2f
∂x2

1
(x) ∂2f

∂x1∂x2
(x)

∂2f
∂x1∂x2

(x) ∂2f
∂x2

2
(x)

)
.

There are many different ways to compute these expressions:

• You may write f(x) explicitly as a function of x1 and x2 and obtain the partial derivatives
by elementary but tedious calculus.

• You may take the cue from the multi-dimensional Taylor formula

f(x+ h) = f(x) + grad f(x) · h+
1

2
hTHf(x)h+O(∥h∥2) , h ∈ R2 ,

and rely on nested Taylor expansion of f(x). You start with expanding ∥x+ h∥ until a
term O(∥h∥3) similar to what we did to derive [NPDE, Eq. (1.3.5)] but one step further. To
do this use

√
1 + τ = 1 + 1

2
τ − 1

8
τ 2 +O(τ 3) .

Solution:
Dxf = (∥x∥ − l)

x⊤

∥x∥
=

(
1− l

∥x∥

)
x⊤

D⊤
xDxf =

lxx⊤

∥x∥3
+

(
1− l

∥x∥

)
I

(1.2c) Compute the derivative DuiJ (n) of J (n) with respect to the position ui of the i-th mass.

HINT: This derivative is a gradient of a function R2 → R. Use the result of the previous sub-
problem to differentiate the elastic energy contribution.

Solution:

Jn =
1

2

n∑
i=0

ki
li
(
∥∥ui+1 − ui

∥∥− li)
2 −

n∑
i=1

fiui

Problem Sheet 1 Page 7 Problem 1.2

DuiJn = −f⊤i −
ki
li

(
1− li
∥ui+1 − ui∥

)
(ui+1 − ui)⊤ +

ki−1

li−1

(
1− li−1

∥ui − ui−1∥

)
(ui − ui−1)⊤

(1.2d) Compute the second derivative (Hessian) of J (n) with respect to the position ui of the
i-th mass.

HINT: Of course, the result of subproblem (1.2b) should be used.

Solution:
D⊤

uiDuiJn = H1 +H2

H1 =
ki
li

[(
li(u

i+1 − ui)(ui+1 − ui)⊤

∥ui+1 − ui∥3

)
+

(
1− li
∥ui+1 − ui∥

)
I

]
H2 =

ki−1

li−1

[(
li−1(u

i − ui−1)(ui − ui−1)⊤

∥ui − ui−1∥3

)
+

(
1− li−1

∥ui − ui−1∥

)
I

]
(1.2e) Verify your result for the Hessian from subproblem (1.2d). For a generic i, i = 1, . . . , n,
if κi = 1, li =

1
n

and ui+1 − ui = ui − ui−1 = a ∈ R2, you should get

D⊤
uiDuiJ (n) := H(ui)J (n) = 2

aaT

∥a∥3
+ 2

(
n− 1

∥a∥

)
I,

with I the 2× 2 identity matrix.

(1.2f) Give the formulas for one step of the Newton method for solving (for ui ∈ R2)

gradui J (n)(u1, . . . ,ui, . . . ,un) = 0 , (1.2.1)

where the positions u1, . . . ,ui−1,ui+1, . . . ,un are kept fixed and can be regarded as parameters.

HINT: You should still remember Newton’s method from your course about elementary numeri-
cal methods. Please look it up in those course notes of yours.

Solution: Let H = H1 +H2 again denote the Hessian of the potential energy function J (n) and
let H−1 be its inverse. Then, the m-th Newton’s iteration for the system is:

um+1
i = um

i −H−1(um
i)Dui

Jn(...,um
i , ...)

(1.2g) Write a MATLAB function

function uj = locminJ(u init,u0,u1,kappa,l,f)

that solves

uj,∗ = argmin
v∈R2

J (n)(u1, . . . ,uj−1,v,uj+1, . . . ,un). (1.2.2)

The position of uj−1 and uj+1 are passed in the 2× 1 arrays u0 and u1, while a reasonable guess
for uj is passed in the vector u init. The row vectors kappa and l contain the spring elastic
constant and equilibrium lengts, while the column vector f contains the force acting on uj .

HINT: Use the result of the previous sub-problem and Newton’s method to find a zero of the
gradient (1.2.1). Terminate the Newton iteration, if the relative change in the value of J (n) drops
below 10−3.

Solution: See Listing 1.7.

Problem Sheet 1 Page 8 Problem 1.2

Listing 1.7: Minimization problem for a single point mass
1 f u n c t i o n u_r = locminJ(u_init, u0, u1, kappa, l, f)
2

3 %% Constants

4 MAXIT = 5;
5 tol = 1e-3;
6

7 %% Define the energy functionals

8 % Elastic energy

9 J_e = @(u, u0, u1, l, k) (0.5*(k(1)/l(1))*(norm(u - u0) -
l(1))ˆ2 + ...

10 0.5*(k(2)/l(2))*(norm(u1 - u) - l(2))ˆ2);
11

12 % Energy in potential field

13 J_f = @(u, f) -f’*u;
14

15 % Total energy

16 J = @(u, u0, u1, l, f, k) J_e(u, u0, u1, l, k) + J_f(u, f);
17

18 % Gradient of total energy

19 J_der = @(u, u0, u1, l, f, k) (-f - (k(2)/l(2))*(norm(u1 - u)
- l(2))*(u1 - u)/norm(u1 - u) + ...

20 (k(1)/l(1))*(norm(u - u0) - l(1))*(u -
u0)/norm(u - u0));

21

22 % Hessian of total energy

23 I2 = eye(2);
24 J_hess = @(u, u0, u1, l, f, k)

(k(2)/l(2)*((l(2)*(u1-u)*(u1-u)’/(norm(u1-u)ˆ3)) + ...
25 ((1-l(2)/norm(u1-u))*I2)) + ...
26 k(1)/l(1)*((l(1)*(u-u0)*(u-u0)’/(norm(u-u0)ˆ3))

+ ...
27 ((1-l(1)/norm(u-u0))*I2)));
28

29 %% Use Newton to solve

30

31 u_r = u_init;
32 f o r i=1:MAXIT
33 % Newton correction

34 du = J_hess(u_r, u0, u1, l, f, kappa)\J_der(u_r, u0, u1, l,
f, kappa);

35 u_r = u_r - du;
36 i f (norm(du) < tol*norm(u_r)), break; end
37 end
38

39 end

Problem Sheet 1 Page 9 Problem 1.2

(1.2h) As already explained in the introduction to this problem, a numerical method for solving
the minimization problem [NPDE, Eq. (1.2.22)] is the non-linear Gauss-Seidel relaxation. In
turns the positions of the masses are adjusted to achieve a local equilibrium:

initial guess (u1,(0), . . . ,un,(0)); k = 0
do

k ← k + 1;
for j = 1 : n

uj,(k) = argmin
v∈R2

J (n)(u1,(k), . . . ,uj−1,(k),v,uj+1,(k−1), . . . ,un,(k−1));

endfor
while (

∑n
l=1

∥∥ul,(k) − ul,(k−1)
∥∥ > tol ·

∑n
l=1

∥∥ul,(k)
∥∥);

Implement a MATLAB function

function u = solvemasspring(n,u0,u1,kappa,l,f,tol)

that computes the equilibrium shape of a mass-spring system with n free masses connected by
identical springs of stiffness κ and equilibrium length l. This function should use the above non-
linear Gauss-Seidel iteration. The meaning of the parameters u0, u1, kappa, l, f is the same
as in subproblem (1.2a), except that u1, kappa, l are vectors and can potentially vary along the
string. The parameter tol is used in the termination criterion for the non-linear Gauss-Seidel
iteration.

At each iteration, make a plot of the solution.

HINT: The inner minimization step has been treated in subproblem (1.2f), so it can be accom-
plished by calling locminJ. As initial guess you can uniformly space your masses on the line
connecting u0 and u1.

Solution: See Listing 1.8.

Listing 1.8: Solution of mass-spring model
1 f u n c t i o n u = solvemasspring(n, u0, u1, k, l, f, tol)
2

3 %%%% Constants %%%%

4 MAX_ITERS = 10000;
5

6 %%%% Input validation %%%%

7 i f (any(s i z e(u0) ˜= [2,1]) || any(s i z e(u1) ˜= [2,1]))
8 error(’Wrong size for u0 or u1. The size must be [2,1]’)
9 end

10

11 i f (u1(1) < u0(1))
12 error(’u1 must be to the right of u0 (the x-component

should be larger)’)
13 end

Problem Sheet 1 Page 10 Problem 1.2

14

15 i f (any(s i z e(l) ˜= [1,n+1]) || any(s i z e(k) ˜= [1,n+1]) ||
any(s i z e(f) ˜= [2,n]))

16 error(’Wrong size for l, k or f. The sizes should be
[1,n+1] for l and k and [2,n] for f, respectively’);

17 end
18

19 %%%% Init u to be distributed proportional to length %%%%

20 l s = cumsum(l);
21 u_mid = [u0(1) + (u1(1) - u0(1))* l s(1:n)/sum(l); u0(2) +

(u1(2) - u0(2))* l s(1:n)/sum(l)];
22 u_init = [u0, u_mid, u1];
23

24 %%%% Energy functionals %%%%

25 % J_e = @(u, l, k) elastic_energy(u, l, k);

26 % J_f = @(u, f)

-reshape(f,1,2*n)*reshape(u(:,2:n+1),2*n,1);

27 % J = @(u, l, k, f) J_e(u, l, k) + J_f(u, f);

28

29 %%%% Minimze by GAUSS-SEIDEL iterations %%%%

30 u = u_init; u_old = z e r o s(2, n+2);
31 f o r i=1:MAX_ITERS
32 %plot_mass_spring_system(u);

33 p l o t(u(1,:),u(2,:))
34 t i t l e (s p r i n t f(’Gauss-Seidel iteration #%d’,i)); drawnow;
35 f o r j = 2:n+1
36 u(:,j) = locminJ(u(:,j), u(:,j-1), u(:,j+1), k(:,j-1:j),

l(:,j-1:j), f(:,j-1));
37 end
38 rel_norm = norm(u - u_old, ’inf’) / norm(u);
39 i f rel_norm < tol
40 %sprintf(’Converged !!!!!!!!!!!!!!! at relative norm =

%g’,rel_norm)

41 break;
42 end
43 u_old = u;
44 i f (mod(i, 10) == 0)
45 s p r i n t f(’Relative norm = %g’, rel_norm)
46 end
47 end
48

49 i f (i == MAX_ITERS)
50 s p r i n t f(’Diverged !!!!!!!!!!!!!!! at relative norm =

%g’,rel_norm)
51 end
52

53 %%%% Plot %%%%

Problem Sheet 1 Page 11 Problem 1.2

54 %plot_mass_spring_system(u); drawnow;

55 p l o t(u(1,:),u(2,:))
56 t i t l e (s p r i n t f(’mass-spring system with %d masses’,n));
57

58 end

On the lecture Homepage you find an archive with a complete code for this problem including
some very nice animations for the convergence of the Gauss-Seidel iteration, just run the main
file which is called massspringdriver.

Listing 1.9: Testcalls for Problem 1.2
1 u0 = [0;0]; u1=[1;0.2];
2 n=10;
3

4 f p r i n t f(’\n##locminJ’);
5 u_r=locminJ([u0(1); u1(2)], u0, u1, [1 1], 1/n*[1 1], [1;0])
6

7 L=1; k = ones(1,n+1);
8 f = [z e r o s(1,n);-(1/n)*ones(1,n)];
9 l = (L/(n+1))*ones(1,n+1);

10

11 f p r i n t f(’\n##solvemasspring’);
12 u=solvemasspring(n, u0, u1, k, l, f, 10ˆ(-1))

Listing 1.10: Output for Testcalls for Problem 1.2
1 >> test_call
2

3 ##locminJ
4 u_r =
5

6 0.5505
7 0.0976
8

9 ##solvemasspring
10 u =
11

12 0 0.0916 0.1956 0.3059 0.4177 0.5287
0.6383 0.7451 0.8394 0.9112 0.9617 1.0000

13 0 -0.0701 -0.1174 -0.1451 -0.1589 -0.1639
-0.1638 -0.1422 -0.0912 -0.0120 0.0869 0.2000

Published on February 18.
To be submitted on February 25.

Problem Sheet 1 Page 12 Problem 1.2

References

[NPDE] Lecture Slides for the course “Numerical Methods for Partial Differential Equa-
tions”.SVN revision # 73870.

[1] M. Struwe. Analysis für Informatiker. Lecture notes, ETH Zürich, 2009. https://moodle-
app1.net.ethz.ch/lms/mod/resource/index.php?id=145.

Last modified on March 4, 2015

Problem Sheet 1 Page 13 References

