
R. Hiptmair
L. Scarabosio
C. Urzua Torres

Spring Term 2015

Numerical Methods for Partial
Differential Equations

ETH Zürich
D-MATH

Homework Problem Sheet 2

Problem 2.1 A Curve with Tension
In [NPDE, Section 1.3] we examined the energy minimization problem for an elastic string in an
external force field. We faced a minimization problem on a space of curves. A similar problem
is investigated in this task in order to practice the derivation of variational equations and of the
associated two-point boundary value problems.

Given a curve u ∈ V := (C1
pw([0, 1]))

2, its tension energy is proportional to the square of its
length:

Jtens(u) :=

(∫ 1

0

∥u′(ξ)∥ dξ

)2

. (2.1.1)

On the curve acts as an external force field f = f(ξ), which results in a potential energy contribu-
tion according to

Jf(u) := −
∫ 1

0

f(ξ) · u(ξ) dξ (2.1.2)

The curve seeks to attain a shape such that its total energy J(u) = Jtens(u) + Jf(u) becomes
minimal. In addition, it is pinned at its ends, that is, we have to deal with the constraints

u(0) = u0, u(1) = u1. (2.1.3)

We follow the approach of [NPDE, Section 1.3.1] to determine which variational problem needs
to be solved to compute the shape of the curve.

(2.1a) Determine the test space V0, i.e. the functional space of all admissible variations v.

HINT: Remember that any direction/variation v ∈ V0 must vanish wherever the argument func-
tion u is fixed, because the test space has to be a vector space. Look up [NPDE, Def. 1.3.16]
again.

Solution: We have V0 = (C1
0,pw([0, 1]))

2 :=
{
v ∈ (C1

pw([0, 1]))
2 : v(0) = v(1) = 0

}
.

(2.1b) Following [NPDE, Section 1.3.1], compute the directional/configurational derivative of
Jf = Jf(u) in direction v ∈ V0 at a generic curve u that is compute

lim
t→0

Jf (u+ tv)− Jf(u)

t
.

Problem Sheet 2 Page 1 Problem 2.1



HINT: Observe that Jf is a linear functional and that the derivative of a linear mapping is easy to
compute.

Solution: We have:

lim
t→0

Jf (u+ tv)− Jf(u)

t
= − lim

t→0

1

t

∫ 1

0

f(ξ) · tv(ξ) dξ = −
∫ 1

0

f(ξ) · v(ξ) dξ.

(2.1c) Compute the directional derivative of Jtens = Jtens(u) in direction v ∈ V0 at a generic
curve shape u, that is, compute

lim
t→0

Jtens(u+ tv)− Jtens(u)

t
,

for any v ∈ V .

HINT: It is strongly recommended to study [NPDE, § 1.3.3] before tackling this problem. In
particular [NPDE, Eq. (1.3.5)] will be useful. The identity A2−B2 = (A−B)(A+B) may also
come handily.

Solution: The perturbation analysis for the tension energy Jtens requires us to compute the limit

lim
t→0

Jtens(u+ tv)− Jtens(u)

t

For this, we make use of the identity

A2 −B2 = (A−B)(A+B)

where

A =
√
Jtens(u+ tv) =

∫ 1

0

∥u′(ξ) + tv′(ξ)∥ dξ

and

B =
√
Jtens(u) =

∫ 1

0

∥u′(ξ)∥ dξ

As such,

A−B =

∫ 1

0

∥u′(ξ) + tv′(ξ)∥ − ∥u′(ξ)∥ dξ =

=

∫ 1

0

∥u′(ξ)∥+ t
u′(ξ) · v′(ξ)

∥u′(ξ)∥
+O(t2)− ∥u′(ξ)∥ dξ =

∫ 1

0

t
u′(ξ) · v′(ξ)

∥u′(ξ)∥
+O(t2) dξ

and

A+B =

∫ 1

0

∥u′(ξ) + tv′(ξ)∥+ ∥u′(ξ)∥ dξ =

∫ 1

0

2∥u′(ξ)∥+ t
u′(ξ) · v′(ξ)

∥u′(ξ)∥
+O(t2) dξ

Problem Sheet 2 Page 2 Problem 2.1



Therefore

lim
t→0

Jtens(u+ tv)− Jtens(u)

t
= lim

t→0

A2 −B2

t
= lim

t→0

(A−B)(A+B)

t

= lim
t→0

1

t

(∫ 1

0

t
u′(ξ) · v′(ξ)

∥u′(ξ)∥
+O(t2) dξ

)(∫ 1

0

2∥u′(ξ)∥+ t
u′(ξ) · v′(ξ)

∥u′(ξ)∥
+O(t2) dξ

)
= lim

t→0

(∫ 1

0

u′(ξ) · v′(ξ)

∥u′(ξ)∥
+O(t) dξ

)(∫ 1

0

2∥u′(ξ)∥+ t
u′(ξ) · v′(ξ)

∥u′(ξ)∥
+O(t2) dξ

)
= 2

∫ 1

0

u′(ξ) · v′(ξ)

∥u′(ξ)∥
dξ

∫ 1

0

∥u′(ξ)∥︸ ︷︷ ︸
=:ℓ(u)

= 2ℓ(u)

∫ 1

0

u′(ξ) · v′(ξ)

∥u′(ξ)∥
dξ

Here ℓ(u) is the length of u. This term is not a constant as L in the slides, it rather depends on
u itself and it is what makes the variational problem non-linear and the minimization problem
non-quadratic.

(2.1d) Determine, which variational problem needs to be solved to compute the shape of the
curve. Explain, why we face a non-linear variational problem.

HINT: Use the results from subproblems (2.1a), (2.1c) and (2.1b).

HINT: Do not forget to specify the trial and test spaces.

Solution: The variational problem is:

Find u ∈ (C1
pw([0, 1]))

2 such that∫ 1

0

2ℓ(u)
u′(ξ) · v′(ξ)

∥u′(ξ)∥
− f(ξ) · v(ξ) dξ = 0

for any v ∈ (C1
0,pw([0, 1]))

2.

(2.1e) Assuming that u is sufficiently smooth, find a two-point boundary value problem,
whose solution provides the shape of the curve. Take the cue from the approach in [NPDE,
Section 1.3.3].

HINT: Remember to use the boundary conditions for test functions v ∈ V0.

Solution: By using integration by parts, we have that

2ℓ(u)

∫ 1

0

u′(ξ) · v′(ξ)

∥u′(ξ)∥
dξ = −2ℓ(u)

∫ 1

0

d

dξ

(
u′(ξ)

∥u′(ξ)∥

)
· v(ξ) dξ

where we used the fact that v(0) = v(1) = 0. The variational equation can be rewritten as∫ 1

0

(
−2ℓ(u)

d

dξ

(
u′(ξ)

∥u′(ξ)∥

)
− f(ξ)

)
· v(ξ) dξ = 0

which, under the necessary smoothness assumptions, results in the following two-point boundary
value problem:

2ℓ(u)
d

dξ

(
u′(ξ)

∥u′(ξ)∥

)
= −f(ξ)

with the boundary conditions
u(0) = u0, u(1) = u1.

Problem Sheet 2 Page 3 Problem 2.1



Problem 2.2 The Brachistochrone Problem
This task retraces all the essential considerations employed in elastic string modeling in class for
a different problem from classical mechanics. The purpose of this problem is to practice all the
techniques introduced in [NPDE, Section 1.2.2], [NPDE, Section 1.2.3], [NPDE, Section 1.3.1],
and [NPDE, Section 1.3.3]. In addition, it involves some MATLAB implementation and calculus
drill (which will not do you any harm).

The Brachistochrone Problem is a classical problem of variational calculus, already tackled by
Newton and Bernoulli in the 17th century: Given two points a, b ∈ R2, such that a2 > b2, we are
looking for a curve u = (u1, u2)

⊤ : [0, 1] → R2 connecting a to b so that a ball rolling down the
curve u reaches b in minimal time.

Figure 2.1: Different curves a ball may roll down. On which does it reach the bottom in shortest
time?

Following our approach to the modeling of an elastic string in [NPDE, Section 1.2.2], we first
consider an approximate discrete model in order to arrive at a continuous minimization problem
describing the Brachistochrone Problem by a limit process.

The discrete model approximates the Brachistochrone curve by a polygon; let ui for i = 0, . . . , N+
1, be points (knots) along the curve, with u0 = a and uN+1 = b, so that there are N “free” points.
To find the speed v of the ball at a point u, we assume that the ball starts at rest and appeal to
conservation of total (kinetic and potential) energy. Thus, in non-dimensional form already, we

Problem Sheet 2 Page 4 Problem 2.2



have for its speed
v(u)2 = a2 − u2 =⇒ v(u) =

√
a2 − u2; .

In the following, we will assume a2 = 0, which can always be achieved by choosing a suitable
coordinate system, so that v(u) =

√
−u2. Note that this, of course, requires u2 < 0.

Each segment [ui,ui+1] has length ∥ui −ui+1∥, and we approximate the speed of the ball on this
segment by the constant speed

vi :=

√
−1

2
(ui

2 + ui+1
2 ) , i = 0, . . . , N .

This means that the time ti it takes the ball to cross segment [ui,ui+1] is approximately

ti(u
i,ui+1) :=

∥ui+1 − ui∥
vi

=

√
∥ui − ui+1∥2

−1
2
(ui

2 + ui+1
2 )

,

and the total time required for rolling along the curve is

TN(u
1, . . . ,uN) =

N∑
i=0

ti(u
i,ui+1) .

The knot positions of the optimal polygon minimize TN(u
1, . . . ,uN).

(2.2a) We consider the discrete model described above. Write a MATLAB function

time = time(u, a, b)

that accepts arguments a and b (2 × 1-vectors) and u (a 2N × 1-vector) containing u1, . . . ,uN

stacked on top each other. It should compute and return TN(u).

HINT: Use the MATLAB function reshape to convert u to an N × 2-matrix instead, i.e.

u = reshape(u, 2, N);

Other useful MATLAB functions are diff and sum.

Solution: See listing 2.1 for the code. It makes good use of the provided MATLAB commands
to vectorize operations as far as possible.

Listing 2.1: Implementation for time
1 f u n c t i o n t = time(u, a, b)
2

3 N = l e n g t h(u)/2;
4 u = reshape(u, 2, N);
5

6 du = d i f f ([a, u, b], 1, 2);
7 norm_du = s q r t(sum(du.ˆ2, 1));
8

9 mu = ([a(2), u(2,:)] + [u(2,:), b(2)])/2;

Problem Sheet 2 Page 5 Problem 2.2



10 speed = s q r t(-mu);
11

12 t = sum(norm_du./speed);
13

14 end

In order to efficiently minimize the function time we will also require the gradient of TN .

(2.2b) In this and the following sub-problems we examine the derivative of the travel time with
respect to the point positions. The obtained expressions will be instrumental in the implementa-
tion of an iterative solution strategy.

Show that the gradients of ti with respect to ui and ui+1 are

gradui ti = − 1

(ui
2 + ui+1

2 )2ti

[
2(ui

2 + ui+1
2 )(ui − ui+1)− ∥ui − ui+1∥2

(
0
1

)]
gradui+1 ti = − 1

(ui
2 + ui+1

2 )2ti

[
2(ui

2 + ui+1
2 )(ui+1 − ui)− ∥ui − ui+1∥2

(
0
1

)]
.

HINT: You may use the fact that gradx ∥x − y∥2 = 2(x − y). Otherwise, this is an exercise in
the rules of differentiation (chain rule, quotient rule).

Solution: Since ti is a square-root type expression, we use the chain rule to get

gradui ti =
1

2ti
gradui

∥ui − ui+1∥2

−1
2
(ui

2 + ui+1
2 )

= − 1

ti
gradui

∥ui − ui+1∥2

ui
2 + ui+1

2

.

Now we apply the quotient rule. The derivative of the numerator is (by the hint) 2(ui − ui+1),

and the derivative of the denominator is
(
0
1

)
. This shows the first equation. The second is almost

identical.

(2.2c) Show that the gradient of TN regarded as a function R2N 7→ R is the 2N -vector

gradu TN(u) =


gradu1 t0 + gradu1 t1
gradu2 t1 + gradu2 t2

...
graduN tN−1 + graduN tN

.

Solution: Based on the definition for TN we have that

gradu TN(u) =
N∑
i=0


gradu1 ti
gradu2 ti

...
graduN ti

.

Most of these contributions are actually zero, since ti only depends on ui and ui+1. In fact, each
ti only contributes twice, except t0 and tN which contributes only once.

Problem Sheet 2 Page 6 Problem 2.2



(2.2d) Write a MATLAB function

dt = difftime(u, a, b)

that accepts the same arguments as the function time in sub-problem (2.2a), and returns the
gradient as a 2N -vector.

HINT: Use the MATLAB function reshape to convert u to an N × 2-matrix instead, i.e.

u = reshape(u, 2, N);

Other useful MATLAB functions are diff and sum.

Solution: See listing 2.2 for the code.

Listing 2.2: Implementation for difftime
1 f u n c t i o n dt = difftime(u, a, b)
2

3 N = l e n g t h(u)/2;
4 u = reshape(u, 2, N);
5

6 du = d i f f ([a, u, b], 1, 2);
7 norm_du_sq = sum(du.ˆ2, 1);
8 norm_du_sq_mx = [z e r o s(1,N+1); norm_du_sq];
9

10 mu = ([a(2), u(2,:)] + [u(2,:), b(2)]);
11 mu_mx = [mu; mu];
12

13 R = s q r t(-norm_du_sq./mu*2);
14 R_mx = [R; R];
15

16 dt = -(-2*mu_mx(:,2:end).*du(:,2:end)...
17 -norm_du_sq_mx(:,2:end))...
18 ./mu_mx(:,2:end).ˆ2./R_mx(:,2:end);
19 dt = dt - (2*mu_mx(:,1:end-1).*du(:,1:end-1)...
20 -norm_du_sq_mx(:,1:end-1))...
21 ./mu_mx(:,1:end-1).ˆ2./R_mx(:,1:end-1);
22 dt = reshape(dt, 2*N, 1);
23

24 end

Our policy is to use a successive minimization-refinement algorithm. that is, we want to solve the
minimization problem for T1 using just a single free point between a and b. Then, we can divide
each curve segment into two by inserting its midpoint as a new knot of the polygon, and solve the
minimization problem again for T3, and so on.

(2.2e) To this end, write a MATLAB function

newu = refine(u, a, b)

Problem Sheet 2 Page 7 Problem 2.2



that accepts the same arguments as the function time in sub-problem (2.2a) (with u of length
2N ), and returns the extended u-vector of length 4N + 2. The extra knots are located at the
midpoint positions of the sides of the original polygon.

Solution: See listing 2.3 for the code.

Listing 2.3: Implementation for refine
1 f u n c t i o n newu = refine(u, a, b)
2

3 N = l e n g t h(u)/2;
4 u = reshape(u, 2, N);
5 pts = [a, u, b];
6

7 midpts = (pts(:,1:end-1) + pts(:,2:end))/2;
8 newu = reshape([midpts; u, b], 4*N+4, 1);
9 newu = newu(1:end-2);

10

11 end

(2.2f) Write a MATLAB script

minimize.m

that solves the Brachistochrone problem for a = (0, 0)⊤, b = (6,−1)⊤ using the successive
minimization-refinement technique described earlier. Use the midpoint (3,−0.5) as your initial
guess for u1.

To solve the minimization problems in MATLAB, you may use the builtin MATLAB function
fminunc from MATLAB’s optimization toolbox in the following way:

options = optimset(’GradObj’, ’on’);
u = fminunc(@minfunc, u, options);

Here, minfunc must be a function that takes only u as argument (not a or b), and returns the
function value and the gradient. See the provided code template for details.

HINT: If you are tired of fminuncwriting gibberish to your console, you can provide the options
options = optimset(’GradObj’, ’on’, ’Display’, ’off’);

HINT: For more information about fminunc, type help fminunc in MATLAB.

HINT: You can use the supplied function plot curve to draw your curve.

Solution: See listing 2.4 for the code.

Listing 2.4: Implementation for minimize
1 f u n c t i o n minimize
2

3 a = [0; 0];
4 b = [6;-1];
5

6 u = (a+b)/2;

Problem Sheet 2 Page 8 Problem 2.2



7

8 options = optimset(’GradObj’, ’on’, ’Display’, ’off’);
9 f o r i = 1:4

10 i f i > 1
11 u = refine(u, a, b);
12 end
13 u = fminunc(@wrapper, u, options);
14 plot_curve(u, a, b);
15 end
16

17 f u n c t i o n [t, dt] = wrapper(u)
18 t = time(u, a, b);
19 dt = difftime(u, a, b);
20 end
21

22 end

(2.2g) Now we tackle the continuum limit N → ∞ for the polygon model. Please study again
[NPDE, Section 1.2.3], where the corresponding considerations are pursued for the mass-spring
model of an elastic string.

(2.2h) As in [NPDE, Fig. 10] assume that the points ui lie on a smooth curve u : [0, 1] → R2,
i.e. that

ui = u(ξi) = u

(
i

N + 1

)
.

Show that in the limit N → ∞, we get

T (u) := lim
N→∞

TN(u
1, . . . ,uN) =

∫ 1

0

∥u′(ξ)∥√
−u2(ξ)

dξ . (2.2.1)

HINT: You may use [NPDE, Eq. (1.2.39)] and [NPDE, Eq. (1.3.6)].

Solution: For fixed N , we write ui = u(ξi), where ξi = i
N+1

. We have the following approxi-
mations:∥∥ui − ui+1

∥∥ =
1

N + 1
(N + 1)

∥∥u(ξi)− u(ξi+1)
∥∥ =

1

N + 1

∥∥∥u′(ξi+
1
2 )
∥∥∥+O(N−3),√

−1

2
(ui

2 + ui+1
2 ) =

√
−u2(ξ

i+ 1
2 ) +O(N−2).

Thus,

TN(u) =
1

N + 1

N∑
i=0

∥∥u′(ξi+
1
2 )
∥∥+O(N−3)√

−u2(ξ
i+ 1

2 ) +O(N−2)
.

This is a Riemann-type sum for the integral (2.2.1).

Problem Sheet 2 Page 9 Problem 2.2



(2.2i) Analogous to [NPDE, Section 1.3.1] derive the variational problem arising from the
minimization of T (u) from 2.2.1 over the space of curves

V :=
{
v ∈ (C1

pw([0, 1]))
2
∣∣v(0) = a, v(1) = b

}
.

HINT: Use [NPDE, Eq. (1.3.5)] and the Taylor expansion of x 7→ x− 1
2 :

1√
−x− th

=
1√
−x

(
1− 1

2
t
h

x

)
+O(t2) .

Solution: Using the hint we can write

∥u′ + tv′∥√
−u2 − tv2

=

(
∥u′∥+ u′ · v′

∥u′∥
t+O(t2)

)(
1√
−u2

(
1− tv2

2u2

)
+O(t2)

)
=

∥u′∥√
−u2

+ t

(
u′ · v′

√
−u2∥u′∥

− v2∥u′∥
2
√
−u2u2

)
+O(t2).

Integrating this equality from ξ = 0 to ξ = 1 gives us

T (u+ tv) = T (u) + t

∫ 1

0

(
u′ · v′

√
−u2∥u′∥

− v2∥u′∥
2
√
−u2u2

)
dξ +O(t2).

So

DvT (u) = lim
t→0

1

t
(T (u+ tv)− T (u)) =

∫ 1

0

(
u′ · v′

√
−u2∥u′∥

− v2∥u′∥
2
√
−u2u2

)
dξ. (2.2.2)

The variational problem is as follows: Find u ∈ V so that DvT (u) = 0 for all v ∈ V0, where the
test space V0 is

V0 :=
{
v ∈ (C1

pw([0, 1]))
2
∣∣v(0) = v(1) = 0

}
.

(2.2j) Using integration by parts as in [NPDE, Section 1.3.3] derive the differential equation
(Euler-Lagrange equation) spawned by the variational problem obtained in sub-problem (2.2i).

Solution: First, note that we can rewrite 2.2.2 in the form

DvT (u) =

∫ 1

0

(
u′ · v′

√
−u2∥u′∥

− 1

2

(
0
1

)
∥u′∥√
−u2u2

· v
)
dξ.

Using partial integration on the first term yields

DvT (u) = −
∫ 1

0

(
d

ddξ

(
u′

√
−u2∥u′∥

)
+

1

2

(
0
1

)
∥u′∥√
−u2u2

)
· v dξ.

By [NPDE, Lemma 1.3.33], we can turn this into the ODE

d

dξ

(
u′

√
−u2∥u′∥

)
+

1

2

(
0
1

)
∥u′∥√
−u2u2

= 0.

Problem Sheet 2 Page 10 Problem 2.2



(2.2k) Show that the cycloid curve

u(ξ) =

(
πξ − sin(πξ)
cos(πξ)− 1

)
, 0 ≤ ξ ≤ 1 , (2.2.3)

satisfies the differential equation found in sub-problem (2.2j).

Solution: First, let us get rid of ∥u′∥. We have

∥u′∥2 = (π − π cos(πξ))2 + (π sinπξ)2

= π2(1− 2 cos(πξ) + cos(πξ)2 + sin(πξ)2)

= π2(2− 2 cos(πξ)) = −2π2u2,

so ∥V u′∥ =
√
2π

√
−u2. Inserting this gives the ODE

− 1√
2π

d

dξ

(
u′

u2

)
+

π√
2

(
0
1

)
1

u2

= 0.

We now consider the first term, component by component.

d

dξ

(
u′
1

u2

)
=

d

dξ

(
π − π cos(πξ)

1− cos(πξ)

)
=

d

dξ
π = 0.

So we see that the ODE holds in the first component. What about the second?

d

dξ

(
u′
2

u2

)
=

d

dξ

(
−π sin(πξ)

cos(πξ)− 1

)
=

−π2 cos(πξ)(cos(πξ)− 1) + π sin(πξ)(−π sin(πξ))

(cos(πξ)− 1)2

=
−π2 cos(πξ)2 − π2 sin(πξ)2 + π2 cos(πξ)

(cos(πξ)− 1)2)

= π2 cos(πξ)− 1

(cos(πξ)− 1)2
=

π2

u2

.

So in conclusion we get

− 1√
2π

d

dξ

(
u′

u2

)
= − 1√

2π

(
0
1

)
π2

u2

= − π√
2

(
0
1

)
1

u2

,

so the ODE holds.

(2.2l) Finally, we switch to a graph description of the curve. The considerations run parallel to
those of [NPDE, Section 1.4.2], which should be read again before starting with this sub-problem.

We re-parameterize the integral (2.2.1) using the variable x = u1(ξ). For this to work, we assume
that the function u1 maps [0, 1] one-to-one and onto [a1, b1]. (It is sufficient, for example, that
u′
1(ξ) > 0 everywhere.) Then, there exists an inverse

ξ : [a1, b1] → [0, 1]

so that u1(ξ(x)) = x. Now, define y(x) = u2(ξ(x)). Then (x, y(x)) is the graph for the curve u
on the x-interval [a1, b1].

Problem Sheet 2 Page 11 Problem 2.2



Show that under this parametrization, (2.2.1) becomes

T (y) =

∫ b1

a1

√
1 + y′(x)2

−y(x)
dx .

HINT: Use the chain rule to express ∂xu2(ξ(x)) and ∂xu1(ξ(x)), see [NPDE, Eq. (1.4.21)]. Also
apply the transformation formula for integrals (“integration by substitution”) [NPDE, Eq. (1.4.22)].

Solution: We write ξ = ξ(x), so dξ = ξ′(x) dx. Of course,
√
−u2(ξ) =

√
−u2(ξ(x)) =√

−y(x). (2.2.1) then becomes

T (y) =

∫ b1

a1

√
u′
1(ξ(x))

2 + u′
2(ξ(x))

2√
−y(x)

ξ′(x) dx

Pulling the ξ′(x) into the square root, we see that we have an expression like

[u′
1(ξ(x))ξ

′(x)]
2
+[u′

2(ξ(x))ξ
′(x)]

2
= [∂xu1(ξ(x))]

2+[∂xu2(ξ(x))]
2 = [∂xx]

2+[∂xy]
2 = 1+y′(x)2.

This concludes the proof.

Listing 2.5: Testcalls for Problem 2.2
1 test_time = time([3;-3], [0;0], [6;-1])
2 test_difftime = difftime([3;-3], [0;0], [6;-1])’
3 test_extend = extend([3;-3], [0;0], [6;-1])’

Listing 2.6: Output for Testcalls for Problem 2.2
1 test_time =
2

3 6.0136
4

5 test_difftime =
6

7 -0.0110 -0.0735
8

9 test_refine =
10

11 1.5000 -1.5000 3.0000 -3.0000 4.5000 -2.0000

Published on February 25.
To be submitted on March 4.

References

[NPDE] Lecture Slides for the course “Numerical Methods for Partial Differential Equa-
tions”.SVN revision # 73870.

Problem Sheet 2 Page 12 References



[1] M. Struwe. Analysis für Informatiker. Lecture notes, ETH Zürich, 2009. https://moodle-
app1.net.ethz.ch/lms/mod/resource/index.php?id=145.

Last modified on March 4, 2015

Problem Sheet 2 Page 13 References


