
R. Hiptmair

L. Scarabosio

C. Urzua Torres

Spring Term 2015

Numerical Methods for Partial
Differential Equations

ETH Zürich

D-MATH

Homework Problem Sheet 4

Problem 4.1 Establishing empirical convergence rates

In [NPDE, Section 1.6] the concept of “convergence”, and in particular of algebraic and expo-

nential convergence, has been introduced. Through several practical examples you have learned,

how use error norms obtained from numerical experiments to extract the necessary information

to describe qualitatively and quantitatively the convergence of a numerical method. Detailed in-

structions are given in [NPDE, § 1.6.26]. This problem is meant to make you more familiar with

concepts and techniques connected with the notion of “convergence”.

(4.1a) In the supplementary material distributed with this problem sheet you can find the ASCII

files Nvalues.txt, Error1.txt, Error2.txt and Error3.txt.

The files Error1.txt, Error2.txt and Error3.txt contain sequences of error norms

obtained from three different numerical experiments and three different discretization schemes

for some boundary value problem. For each case the associated values N of degrees of freedom

used for discretization are contained in the file Nvalues.txt. Thus pairs of problem sizes N

and related norms of the discretization error are available.

For each of the three convergence studies, describe qualitatively and quantitatively the empirical

convergence that you observe.

HINT: Valuable information can be extracted from doubly logarithmic (loglog) or semi-logarithmic

(semilogy) plots. In MATLAB, you may use the function polyfit to estimate the conver-

gence rates. See [NPDE, § 1.6.26] for details.

HINT: The MATLAB function lsqcurvefit that solves nonlinear least squares problems may

come into help.

Solution: For the values e1 from Error1.txt, a double logarithmic plot (see left plot in

Figure 4.1) shows that we have algebraic convergence; doing a first order polynomial fitting of

log(N) and log(e1), we see that the convergence rate is 0.496540≈ 1
2
.

For the values e2 from Error2.txt, a semi-logarithmic (semilogy) plot (see right plot in

Figure 4.1) shows that the convergence is exponential. A first order polynomial fitting of N and

log(e2) shows that e2 ∼ 2−N .

For the values from Error3, we get the semi-logarithmic and double logarithmic plots shown

in Figure 4.2 (a) and (b). From the two plots we conjecture that the error behaves as e3 ∼ e−γNδ

;

since the error has to decrease as N → +∞, we have that either γ > 0, δ > 0, either γ < 0, δ < 0.

Since the error curve is convex in the semi-logarithmic plot and concave in the double logarithmic

Problem Sheet 4 Page 1 Problem 4.1

plot, we deduce that we are in the case that γ > 0 and δ > 0. Thus, we have that

(e3)i = C1e
−γNδ

i , C1, γ, δ > 0, i = 1, . . . ,M, (4.1.1)

where Ni denotes the i-th entry of the vector N of the number of degrees of freedom, (e3)i the

corresponding measured error, and M the length of the array N .

Using the MATLAB function lsqcurvefit on log((e3)i) = log(C1)−γN δ
i (which works better

than if we use (4.1.1)), then we get C1 ≈ 170, γ ≈ 0.5409 and δ ≈ 0.5030 ≈ 1
2
. Thus, in the end

we have that e3 ≈ 170
√
3
−N

1
2

= 170 · 3−
√
N
2 (where we have obtained

√
3 as eγ).

A double logarithmic plot of N and log(C1) − log(e3) gives a curve that is very close to a line,

see Figure 4.2 (c).

See Listing 4.1 for more details on the procedure we have used.

Listing 4.1: Implementation for tasks (4.3a) and (4.3b).

1 N = load(’Nvalues.txt’,’-ascii’);

2 e1 = load(’Error1.txt’,’-ascii’);

3 e2 = load(’Error2.txt’,’-ascii’);

4 e3 = load(’Error3.txt’,’-ascii’);

5

6 f i g u r e(1)

7 l o g l o g(N,e1);

8 p = p o l y f i t(l o g(N), l o g(e1),1);

9 s p r i n t f (’Algebraic convergence with rate %f’,-p(1))

10

11 f i g u r e(2)

12 semi logy(N,e2);

13 p = p o l y f i t(N, l o g(e2),1);

14 s p r i n t f (’Exponential convergence with basis %f and rate

-1’,exp(-(p(1))))

15

16 f i g u r e(3)

17 semi logy(N,e3)

18 f i g u r e(4)

19 l o g l o g(N,e3)

20 x0 = [1,1,1];

21 x = lsqcurvefit(@(x,N) l o g(x(1))-x(2).*N.ˆ(x(3)),x0,N, l o g(e3));

22 s p r i n t f (’Exponential convergence with basis %f and exponent

Nˆ%f’,exp(x(2)),x(3))

23 f i g u r e(5)

24 l o g l o g(N, l o g(x(1))- l o g(e3))

(4.1b) For each of the three convergence studies from subproblem (4.3a), provide a plot of the

error norms versus N , for which the measured error norms approximately lie on a straight line.

Solution: See Figure 4.1 and right plot in Figure 4.2.

Problem Sheet 4 Page 2 Problem 4.1

(a) Error1.txt (b) Error2.txt

Figure 4.1: Convergence plots for Error1.txt and Error2.txt.

(a) Semi-log plot (b) Log-log plot (c) Log-loglog plot

Figure 4.2: Convergence plots for Error3.txt.

Problem Sheet 4 Page 3 Problem 4.1

Problem 4.2 L2(0, 1)-Orthogonal Projection onto Linear Finite Element

Space

In this problem we deal with a very simple quadratic minimization problem that does not even

involve derivatives. We derive the associated variational formulation, and then discretize it with

linear finite elements as in [NPDE, Section 1.5.2.2]. A careful re-examination of this section is

recommended. You will be asked to implement the method in MATLAB and perform a numerical

study of its convergence.

Given f ∈ C0
pw([0, 1]), the minimization problem reads:

u∗ = argmin
v∈C1

pw([0,1])

∫ 1

0

|v(x)− f(x)|2 dx
︸ ︷︷ ︸

:=J(v)

(4.2.1)

(4.2a) Show that J = J(v) from (4.2.1) is a quadratic functional and identify its building

blocks according to [NPDE, Def. 2.2.24].

Solution: Since

J(v) =

∫ 1

0

|v(x)−f(x)|2 dx =

∫ 1

0

(v(x)−f(x))(v(x)−f(x)) dx =

∫ 1

0

v2(x)−2v(x)f(x)+f 2(x) dx,

we can write it as

J(v) =
1

2
a(v, v)− ℓ(v) + γ,

with a(u, v) := 2
∫ 1

0
u(x)v(x) dx, ℓ(v) := 2

∫ 1

0
f(x)v(x) dx and γ :=

∫ 1

0
f 2(x) dx.

(4.2b) Derive the variational problem associated with the minimization problem (4.2.1).

HINT: Don’t forget to specify the trial and test spaces.

Solution: The variational problem reads: seek u ∈ C1
pw([0, 1]):

∫ 1

0

u(x)v(x) dx =

∫ 1

0

f(x)v(x) dx ∀v ∈ V := C1
pw([0, 1]). (4.2.2)

Remark: Variational problems of this kind are encountered when computing the L2(0, 1)-ortho-

gonal projection of f onto subspaces.

(4.2c) Show that the solutions to (4.2.1) are unique, that is, if two solutions are known to be

global minimizers of J , then they most agree.

HINT: A theorem from [NPDE, Section 2.2.3] may come handy. If you plan to use it, please give

a precise citation.

Solution: A function u is a solution to (4.2.1) if and only if it is a solution to (4.2.2). Suppose

now we have to minimizers u1 and u2 ∈ C1
pw([0, 1]); then we have

∫ 1

0

u1(x)v(x) dx =

∫ 1

0

f(x)v(x) dx

∫ 1

0

u2(x)v(x) dx =

∫ 1

0

f(x)v(x) dx.

Problem Sheet 4 Page 4 Problem 4.2

for every v ∈ V .

Subtracting the two equations we obtain

∫ 1

0

(u1(x)− u2(x))v(x) dx = 0 for all v ∈ V,

which, thanks to the fundamental lemma of calculus of variations ([NPDE, Lemma 1.3.33]),

implies u1 = u2.

Alternatively, one can observe that the bilinear form ã(u, v) :=
∫ 1

0
u(x)v(x) dx, u, v ∈ V , sat-

isfies a(u, u) = ‖u‖2
L2(]0,1[) and thus it is positive definite. Then Theorem [NPDE, Thm. 2.2.41]

implies uniqueness of the solution.

To begin with, we consider Galerkin discretization based on the space VN = S0
1 (M) of piecewise

linear continuous functions on a uniform mesh M of [0, 1] with M cells of size h = 1
M

, see

[NPDE, Section 1.5.2.2]. In the following, use tent functions according to [NPDE, Eq. (1.5.62)]

as a basis for the Galerkin trial and test space.

(4.2d) What is the Galerkin matrix for this problem? Write a MATLAB function

A = galmatrix tent(M)

which takes the number of equal mesh cells as input in M, computes the Galerkin matrix for the

variational problem from subproblem (4.2b), and returns it in the sparse matrix A.

Solution: The Galerkin matrix should have the format

A =












h1

3
h1

6
h1

6
h1+h2

3
h2

6
h2

6
h2+h3

3
h3

6
. . .

. . .
. . .

hN−1

6

hN−1+hN

3
hN

6
hN

6
hN

3












,

where h1, . . . , hN are the mesh widths.

For equidistant mesh points ,this results in

A =












h
3

h
6

h
6

2h
3

h
6

h
6

2h
3

h
6

. . .
. . .

. . .
h
6

2h
3

h
6

h
6

h
3












,

where h is the mesh widths.

Listing 4.2: Implementation for galmatrix tent

1 f u n c t i o n A = galmatrix_tent(mesh)

2 h = mesh(2:end) - mesh(1:end-1);

Problem Sheet 4 Page 5 Problem 4.2

3 v1 = h./6;

4 v2 = [h;0]./3 + [0;h]./3;

5

6 A = g a l l e r y(’tridiag’,v1,v2,v1);

7

8 %Modification for zero b.c.

9 %A = A(2:end-1,2:end-1);

10

11 end

See Listing 4.2.

(4.2e) Write down the entries of the right-hand side vector for the variational problem from

subproblem (4.2b), using the composite trapezoidal rule for numerical quadrature of integral in-

volving the generic function f .

Solution: For equidistant mesh points, the right-hand side is given by

l =












f(0)h
2

f(h)h
f(2h)h

...

f((M − 1)h)h
f(1)h

2












,

where h is the mesh widths.

(4.2f) Write a MATLAB function

L = rhs tent(M,f)

which takes as input the number M of equal mesh cells and a function handle to f , computes the

right-hand side vector, and returns it in the column vector L.

Solution: See Listing 4.3.

Listing 4.3: Implementation for rhs tent

1 f u n c t i o n rhs = rhs_tent(mesh, f)

2

3 fvals = f(mesh);

4 hvals = mesh(2:end) - mesh(1:end-1);

5

6 rhs = ([hvals;0].*fvals + [0;hvals].*fvals)/2;

7

8 %Modification for zero b.c.

9 %rhs = rhs(2:end-1);

10

11 end

Problem Sheet 4 Page 6 Problem 4.2

(4.2g) Write a MATLAB function

U = l2proj tent(M,f)

that solves the variational problem from task (4.2b) approximately based on linear finite element

Galerkin discretization on an equidistant mesh with M cells. The arguments M and f are the same

as before. The column vector U should contain the value of the solution in each node of the mesh.

Solution: See Listing 4.4.

Listing 4.4: Implementation for l2proj tent

1 f u n c t i o n U = l2proj_tent(mesh, f)

2

3 A = galmatrix_tent(mesh);

4 L = rhs_tent(mesh, f);

5 U = A\L;

6

7 % Modification for zero boundary conditions

8 %U = [0;U(:);0]’;

9 end

We now want to investigate the convergence for the Lp-norm of the discretization error.

For u ∈ C0
pw(I) on a closed interval I ⊂ R and a real number 1 ≤ p ≤ ∞, the Lp-norm of u is

defined as

‖u‖Lp(I) :=

(∫

I

|u(x)|p dx
) 1

p

, for 1 ≤ p < ∞, (4.2.3)

and

‖u‖L∞(I) := sup
x∈I

|u(x)|. (4.2.4)

(4.2h) Write a MATLAB function

function rate = lpcvg(sol,p)

that, given 1 ≤ p ≤ ∞, performs a convergence study for the Lp-norm of the discretization error

and returns in rate the (algebraic) convergence rate. Use the convention that p = 0 for the L∞-

norm. The argument sol is a function handle to the exact solution. Use the values N = 10 · 2i,
i = 1, . . . , 9, for the number of mesh intervals.

For the computation of the norms, use the 2-point Gauss quadrature rule, with quadrature points

ζ1 = −
√
3
3
, ζ2 =

√
3
3

and weights ω1 = ω2 = 1 on the reference interval [−1, 1].

Solution: See Listing 4.5 for the code.

Listing 4.5: Implementation for lpcvg

1 f u n c t i o n rate = lpcvg(sol,p)

2

3 Nvals = 10*2.ˆ(1:9);

Problem Sheet 4 Page 7 Problem 4.2

4 errors = z e r o s(1,9);

5

6 f o r i = 1:9

7 mesh = l i n s p a c e(0,1,Nvals(i)+1)’;

8 h = 1/Nvals(i);

9

10 U = l2proj_tent(mesh, sol);

11

12 qpts = s o r t([mesh(1:end-1) + h/2 - h/(2* s q r t(3));

mesh(1:end-1) + h/2 + h/(2* s q r t(3))]);

13 appr = linterp(mesh, U, qpts);

14 ex = sol(qpts);

15

16 i f (p˜=0)

17 errors(i) = (sum(abs((appr-ex’)).ˆp)*(h/2)).ˆ(1/p);

18 e l s e

19 errors(i) = max(abs(appr(:)-ex(:)));

20 end

21

22 end

23

24 l o g l o g(Nvals,errors)

25 hold on

26 pol = p o l y f i t(l o g(Nvals), l o g(errors), 1);

27 rate=-pol(1);

(4.2i) Write a MATLAB script

convergence

to compute

‖u− uN‖Lp(]0,1[) for N → ∞. (4.2.5)

for the values p = 1.0, 1.5, 2, 4,∞. In (4.2.5), u and uN denote the exact and Galerkin solutions,

respectively. Plot the error curves for these values of p in the case that the exact solution is

u(x) = sin(x2) and in the case that it is u(x) =

{

1 x ≤
√
2
2

0 x >
√
2
2

.

Solution: See Figure Figure 4.3 and code 4.6.

Listing 4.6: Implementation for convergence

1

2 pvals=[1,1.5,2,4,0];

3 rates = z e r o s(s i z e(pvals));

4 exact = @(x) s i n(x.ˆ2);

5 %exact = @(x) (x<sqrt(2)/2);

6

7 f o r i=1: l e n g t h(pvals)

Problem Sheet 4 Page 8 Problem 4.2

10
1

10
2

10
3

10
4

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

N

||
u
−
u
N
||
L
p
(]
0
,1
[)

Convergence rates for u(x) = sin(x2), in different Lp-norms

(a) sin(x2)

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

N

||
u
−
u
N
||
L
p
(]
0
,1
[)

Convergence rates for step function, in different Lp-norms

p=1
p=1.5
p=2
p=4
p=∞

(b) Step function

Figure 4.3: Convergence plots for different Lp-norms (double logarithmic plots), subproblem

(4.2i).

8 rates(i)=lpcvg(exact,pvals(i));

9 end

10

11 pvals(end) = I n f;

12 f i g u r e

13 p l o t(pvals,rates)

14

15 % p=polyfit(log(pvals(1:end-1)),log(log(rates(1:end-1))),1);

16 % gamma=exp(p(2));

17 % plot(log(pvals),log(log(rates)))

18 % hold on

19 % plot(log(pvals),log(gamma*pvals.^(p(1))),’r’)

20

21 p = p o l y f i t(l o g(pvals(1:end-1)), l o g(rates(1:end-1)),1);

22 f i g u r e

23 l o g l o g(pvals,rates)

24 hold on

25 l o g l o g(pvals,p(2).*pvals.ˆp(1),’r’)

Listing 4.7: Testcalls for Problem 4.2

1 mesh = l i n s p a c e(0,1,5)’;

2 f p r i n t f(’\n\n##galmatrix_tent:’)

3 f u l l (galmatrix_tent(mesh))

4

5 f p r i n t f(’\n\n##rhs_tent:’)

6 rhs_tent(mesh, @(x) x)’

7

8 f p r i n t f(’\n\n##l2proj_tent:’)

9 l2proj_tent(mesh, @(x) x)’

10

Problem Sheet 4 Page 9 Problem 4.2

11 f p r i n t f(’\n\n##lpcvg:’)

12 rate = lpcvg(@(x) s i n(x.ˆ2),2)

Listing 4.8: Output for Testcalls for Problem 4.2

1 >> test_call_lp

2

3 ##galmatrix_tent:

4 ans =

5

6 0.0833 0.0417 0 0 0

7 0.0417 0.1667 0.0417 0 0

8 0 0.0417 0.1667 0.0417 0

9 0 0 0.0417 0.1667 0.0417

10 0 0 0 0.0417 0.0833

11

12 ##rhs_tent:

13 ans =

14

15 0 0.0625 0.1250 0.1875 0.1250

16

17 ##l2proj_tent:

18 ans =

19

20 -0.1429 0.2857 0.5000 0.7143 1.1429

21

22 ##lpcvg:

23 rate =

24

25 1.5028

Problem 4.3 Quadratic and non-quadratic functionals

In [NPDE, Section 1.3] you have seen many examples of energy functionals, and you have learned

the connection between the minimization of a functional and the solution of a variational formu-

lation. Moreover, in [NPDE, Section 1.4] and, again, in [NPDE, Section 2.2.3], you have studied

quadratic minimization problems, which lead to linear variational formulations as explained in

[NPDE, Section 1.4.1] and [NPDE, Section 2.4.1]. In this problem, we will study the properties

of further functionals.

Let V := C1
pw([0, 1]). We consider the functionals Ji : V → R, i = 1, 2, 3:

J1(v) :=

∫ 1

0

|v(x)|2 − v′(x) dx , (4.3.1)

J2(v) :=

∫ 1

0

v(x)v′(x) + v2(x) dx , (4.3.2)

J3(v) :=

∫ 1

0

cosh(v′(x)) + v(x) dx , (4.3.3)

cosh(x) := 1
2
(ex + e−x).

Problem Sheet 4 Page 10 Problem 4.3

(4.3a) Which Ji, i = 1, 2, 3, is a quadratic functional?

For these, identify the associated linear forms and (symmetric) bilinear forms. Which of the latter

are symmetric positive definite?

Solution: We remind that a functional J : V → R is quadratic if and only if it can be written

as J(v) = 1
2
a(u, v)− ℓ(v) + γ, v ∈ V , where a(·, ·) is a bilinear form, ℓ(·) is a linear form and

γ ∈ R (see [NPDE, Def. 1.4.3]).

J1 is quadratic with

a1(u, v) := 2

∫ 1

0

u(x)v(x) dx, ℓ1(v) :=

∫ 1

0

v′(x) dx = v(1)−v(0), γ1 = 0, for all u, v ∈ V.

a1(u, v) is positive definite because a1(u, u) = 2‖u‖2
L2(]0,1[), for every u ∈ V ,which is always

positive and equal to 0 if and only if u = 0 (where 0 is the zero function).

J2 is quadratic with

a2(u, v) :=

∫ 1

0

u′(x)v(x)+u(x)v′(x)+2u(x)v(x) dx, ℓ2(v) = 0, γ2 = 0, for all u, v ∈ V.

We have that a2(u, u) = u2(1) − u2(0) + 2‖u‖2L2(]0,1[), for every u ∈ V , which is not positive

definite because of the presence of −u2(0).

J3 is not quadratic because of the presence of cosh(x).

(4.3b) Show that J1 and J3 are convex.

HINT: Recall the following definition:

A functional J : V → R on an affine space V is called convex if

J(λx+ (1− λ)y) ≤ λJ(x) + (1− λ)J(y), for all λ ∈ [0, 1] and all x, y ∈ V. (4.3.4)

HINT: Use that f(x) : R → R, f(x) = x2, and cosh : R → R are convex on V = R.

Solution: For J1 we have:

J1(λu+ (1− λ)v) =

∫ 1

0

(λu(x) + (1− λv(x)))2 − λu′(x)− (1− λ)v′(x) dx ≤

≤
∫ 1

0

λu2(x) + (1− λ)v2(x)− λu′(x)− (1− λ)v′(x) dx =

= λJ1(u) + (1− λ)J1(v),

for every λ ∈ [0, 1] and every u, v ∈ V = C1
pw([0, 1]). In the second passage, we have used the

convexity of f(x) = x2.

For J3, using the convexity of cosh(x), we have:

J3(λu+ (1− λ)v) =

∫ 1

0

cosh(λu′(x) + (1− λv′(x))) + λu(x) + (1− λ)v(x) dx ≤

≤
∫ 1

0

λ cosh(u′(x)) + (1− λ) cosh(v′(x)) + λu(x) + (1− λ)v(x) =

= λJ3(u) + (1− λ)J3(v),

Problem Sheet 4 Page 11 Problem 4.3

for every λ ∈ [0, 1] and every u, v ∈ V = C1
pw([0, 1]).

(4.3c) Derive the variational formulations that have to be satisfied by potential minimizers of

Ji, i = 1, 2, 3.

HINT: For J3, remember that (cosh(x))′ = sinh(x).

Solution: The variational formulation for J1 reads:

Find u ∈ V such that

2

∫ 1

0

u(x)v(x) dx = v(1)− v(0) for all v ∈ V. (4.3.5)

For J2, we have:

Find u ∈ V such that
∫ 1

0

u′(x)v(x)+u(x)v′(x)+2u(x)v(x) dx = u(1)v(1)−u(0)v(0)+2

∫ 1

0

u(x)v(x) dx = 0, for all v ∈ V.

(4.3.6)

Finally, for J3, from limt→0
J3(u+tv)−J3(u)

t
and using that (cosh(x))′ = sinh(x):

Find u ∈ V such that
∫ 1

0

sinh(u′(x))v′(x) dx = −
∫ 1

0

v(x) dx, for all v ∈ V.

In all the cases, we have denoted V := C1
pw([0, 1]).

(4.3d) State the 2-point boundary value problems satisfied by solutions of the variational equa-

tions from subproblem (4.3c), when V0 = C1
pw,0([0, 1]) is used as trial and test space. In all cases,

assume the solution u to be smooth.

Solution: For v ∈ V0, the variational problem associated to J1 becomes:

Find u ∈ V0 such that
∫ 1

0

u(x)v(x) dx = 0 for all v ∈ V0.

Then, for the fundamental lemma of calculus of variations (see [NPDE, Lemma 1.3.33]), this

leads to the following 2-point boundary value problem:

u(x) = 0 in (0, 1), u(0) = u(1) = 0.

From the variational problem associated to J2, using the integration by parts or simply using the

boundary conditions, we get

u(x) = 0 in (0, 1), u(0) = u(1) = 0.

Finally, applying integration by parts and using the zero-boundary conditions of the test functions,

we get that the 2-point boundary value problem associated to J3 reads:

u′′(x) cosh(u′(x)) = 1 in (0, 1), u(0) = u(1) = 0.

Problem Sheet 4 Page 12 Problem 4.3

(4.3e) Show that no minimizer exists for J1.

Solution: Let us consider vn = nx
n2

2 , n ∈ N. First of all, it’s trivial that v ∈ V . We have that

J1(vn) =

∫ 1

0

v2n(x) dx− (vn(1)− vn(0)) =
n2

n2 + 1
− n.

J1(vn) → −∞ as n → +∞, and thus J1 is unbounded from below and has no minimizer.

(4.3f) Show that no minimizer exists for J2.

Solution: This time we present another approach and proceed by contradiction.

We observe that, if u is a minimizer, then it solves (4.3.6), which in turn implies J2(u) = 0.

Notice that we can choose u not to be the zero function, because, for instance, J2(u) = 0 for

u(x) = cos(π
2
x).

Let now w ∈ V be such that w(x) =
√

f(x)u(x), with f = f(x) a function that is strictly positive

and strictly convex on (0, 1), and such that f(0) = f(1) = 1. Take, for example, f(x) = x2−x+1
or f(x) = sin(πx) + 1.

Then we have:

J2(w) = w2(1)− w2(0) + ‖w‖2L2(]0,1[) = f(1)u2(1)− f(0)u2(0) + ‖
√

fu‖L2(]0,1[)

= u2(1)− u2(0) + ‖
√

fu‖L2(]0,1[);

since we can choose u 6= 0 (where here 0 denotes the zero function), the strict convexity of f

implies that

‖
√

fu‖L2(]0,1[) =

∫ 1

0

f(x)u2(x) dx <

∫ 1

0

u2(x) dx.

This means that J2(w) < J2(u), which contradicts the fact that u is a minimizer.

Alternatively, if we proceed as in the solution of task (4.3f), we can choose vn(x) = nen
2x ∈ V ,

n ∈ N. It holds that v
(
n1) = ne−n2

, vn(0) = n and ‖vn‖2L2(]0,1[) = 1− e−n2

.

Then J2(vn) = ne−n2 − n+ 1− e−n2 → −∞ as n → +∞.

Published on March 11.

To be submitted on March 18.

References

[NPDE] Lecture Slides for the course “Numerical Methods for Partial Differential Equa-

tions”.SVN revision # 74461.

[1] M. Struwe. Analysis für Informatiker. Lecture notes, ETH Zürich, 2009. https://moodle-

app1.net.ethz.ch/lms/mod/resource/index.php?id=145.

[NCSE] Lecture Slides for the course “Numerical Methods for CSE”.

Last modified on March 30, 2015

Problem Sheet 4 Page 13 References

http://www.sam.math.ethz.ch/~hiptmair/tmp/NPDE/NPDE15.pdf
http://www.sam.math.ethz.ch/~hiptmair/tmp/NumCSE11_ext.pdf

	Problem Sheet 4
	4.1 Establishing empirical convergence rates
	4.2 L2(0,1)-Orthogonal Projection onto Linear Finite Element Space
	4.3 Quadratic and non-quadratic functionals

