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Problem 5.1 Linear output functionals
In [NPDE, Section 2.2.3] we have seen that continuity (→ [NPDE, Def. 2.2.49]) of linear forms
with respect to energy norms (→ [NPDE, Def. 2.2.38]) induced by symmetric positive definite
bilinear forms (→ [NPDE, Def. 2.2.35]) is a key property. Thus, for elliptic boundary value
problems, continuity of linear forms in Sobolev spaces is crucial.

For the point evaluation functional, we investigated its continuity in H1(Ω) in [NPDE, Ex. 2.4.18],
for the source functional v →

∫
Ω
fv dx continuity was studied in [NPDE, Section 2.3.3], whereas

boundary functionals arising from non-homogeneous Neumann problems were examined in [NPDE,
§ 2.10.7].

In this problem we consider the linear functionals

J1(v) :=

∫
Ω

c · grad v(x) dx , c ∈ R2 , (5.1.1)

J2(v) :=

∫
Ω

v(x) dx , (5.1.2)

J3(v) :=

∫
∂Ω

grad v(x) · n(x) dS(x) , (5.1.3)

J4(v) :=

∫
Ω

v

(
x

∥x∥

)
dx . (5.1.4)

on the unit disk Ω = {x ∈ R2 : ∥x∥ < 1}. These functionals all make sense when we apply
them to smooth functions.

Please answer the following questions for (5.1.1)–(5.1.4).

(5.1a) Which of these functionals are continuous on L2(Ω)? If you suspect a functional to be
continuous, try to prove it. If you think, it is not continuous, try to find a counterexample as in
[NPDE, § 2.4.20].

HINT: The functional (5.1.4) can be rewritten in terms of an integral over ∂Ω.

(5.1b) Solve subproblem (5.1a), now with L2(Ω) replaced with the Sobolev space H1(Ω).

HINT: The standard tools for proving continuity of linear functionals on Sobolev spaces are the
Cauchy-Schwarz inequality [NPDE, Eq. (2.2.39)] and trace theorems like [NPDE, Thm. 2.10.8].
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Problem 5.2 Heat Conduction with Non-Local Boundary Conditions
This problem is meant to practice the conversion of a variational problem into a boundary value
for a partial differential equation, see [NPDE, Section 2.5] and the extraction of boundary condi-
tions hidden in the variational formulation as in [NPDE, Ex. 2.5.18].

Concretely, we consider the modelling of a two-dimensional cross-section of a submerged insu-
lated wire, see Figure 5.1. The wire has a central core of conducting material, say copper, which
carries a current. Ohmic losses lead to heat generation in the copper. Copper conducts heat very
well and, thus, the copper core can be assumed to have a uniform but unknown temperature.
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Figure 5.1: Cross-section of a submerged wire.

The copper is surrounded by an annulus of insulator, some plastic, for example, which is again
surrounded by water, which we assume to be at a constant temperature of 0. We seek a mathe-
matical model providing us with the temperature distribution within the insulation. Such a model
is given by the variational problem

u ∈ V0 :

∫
Ω

κ(x) grad u(x) · grad v(x) dx =

∫
Γ1

v(x) dS , ∀v ∈ V0, (5.2.1)

where the heat conductivity κ is uniformly positive (→ [NPDE, Def. 2.2.15]) and bounded, and
with

V0 =
{
v ∈ H1(Ω)

∣∣ v|Γ0 = 0, v|Γ1 = const
}
.

(5.2a) Determine a bilinear form a and linear form ℓ so that (5.2.1) becomes an abstract linear
variational problem a(u, v) = ℓ(v).

(5.2b) Show that ℓ is continuous with respect to the energy norm induced by a, cf. [NPDE,
Def. 2.2.49]. In the lecture we found this to be an essential condition for the well-posedness of a
linear variational problem, see [NPDE, Lemma 2.2.47].

HINT: The energy norm is defined as in [NPDE, Def. 2.2.38], and ℓ must satisfy [NPDE,
Eq. (2.2.48)] to be continuous with respect to this norm. Then use the trace theorem [NPDE,
Thm. 2.10.8].

(5.2c) If u solves (5.2.1) and is sufficiently smooth, it also satisfies a partial differential equa-
tion on Ω. Find this equation.

HINT: Follow the approach of [NPDE, Section 2.5]: as test functions v use functions in C1
0(Ω),

that is, they should be zero on both boundaries Γ0, Γ1. Use [NPDE, Thm. 2.5.9] (with gradu in
place of j). Argue what happens to the boundary terms. Then appeal to [NPDE, Lemma 2.5.12].
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(5.2d) The function u from problem (5.2c) must also satisfy a certain non-local boundary
condition implied by (5.2.1). Find this boundary condition.

HINT: Follow the strategy from [NPDE, Ex. 2.5.18] and use the PDE derived in the previous
sub-problem.

(5.2e) What is the physical interpretation of the boundary condition from (5.2d) in terms of
heat conduction?

Problem 5.3 Minimization of a Quadratic Functional
[NPDE, Section 2.2.3] introduced abstract quadratic minimization problems, see [NPDE, Def. 2.2.24]
and [NPDE, Def. 2.2.29]. As concrete examples arising from equilibrium models we studied
quadratic minimization problems posed on the Sobolev spaces H1

0 (Ω) and H1(Ω) of scalar func-
tions. In [NPDE, Section 2.4], we learned how to convert a quadratic minimization problem into
variational form, see [NPDE, Eq. (2.4.9)]. [NPDE, Section 2.5] taught us how to use multidi-
mensional integration by parts [NPDE, Thm. 2.5.9] to convert the linear variational problems on
Sobolev spaces into a boundary value problems for 2nd-order elliptic PDEs. In this exercise we
practise all these steps in the case of an “exotic” quadratic minimization problem.

We consider the quadratic functional

J(u) =

∫
Ω

∣∣ divu(x)∣∣2 + ∥u(x)∥2 + f(x) · u(x) dx , (5.3.1)

with Ω ⊂ R3 bounded, and for functions u : Ω → R3, that is, J takes vector field arguments.

(5.3a) Identify the bilinear form a and the linear form ℓ in the quadratic functional J , cf.
[NPDE, Def. 2.2.24].

HINT: See [NPDE, Def. 2.2.24].

(5.3b) Show that the bilinear form a from subproblem (5.3a) is symmetric and positive definite,
see [NPDE, Def. 2.2.35].

HINT: See [NPDE, Eq. (2.2.26)] and [NPDE, Def. 2.2.35].

(5.3c) Show that the linear form ℓ from subproblem (5.3a) is continuous with respect to the
energy norm induced by a.

HINT: The energy norm is defined as in [NPDE, Def. 2.2.38], and ℓ must satisfy [NPDE,
Eq. (2.2.48)] to be continuous with respect to this norm.

(5.3d) Explain why the Sobolev space

H(div,Ω) :=

{
v : Ω → R3 integrable

∣∣∣∣ ∫
Ω

∣∣ div v
∣∣2 + ∥v∥2 dx < ∞

}
.

provides the right framework for studying the minimization problem for the functional J from
(5.3.1).

(5.3e) Derive and state the linear variational problem equivalent to the minimization problem

u∗ = argmin
v∈H(div,Ω)

J(v).
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HINT: See [NPDE, Eq. (2.4.8)] and [NPDE, Eq. (2.4.9)].

(5.3f) Derive the partial differential equation on Ω that arises from the variational problem
from (5.3e).

HINT: Follow the approach of [NPDE, Section 2.5], in particular [NPDE, Ex. 2.5.18]: as test
functions v use vector fields in (C1

0(Ω))
3, that is, they should be zero on the boundary. Use

[NPDE, Thm. 2.5.9] (with div u in place of v and v in place of j) in order to “shift the div from
v onto div u as − grad”. Argue, what happens to the boundary terms. Then appeal to [NPDE,
Lemma 2.5.12].

(5.3g) The variational problem from (5.3e) also implies boundary conditions. Which?

HINT: Follow the strategy from [NPDE, Ex. 2.5.18] and use the PDE derived in subproblem (5.3f).

Problem 5.4 Poisson equation in polar coordinates
In the problem we will come across an important case of transformation of the domain of a
boundary value problem prior to its discretization. We interpret the domain transformation as a
change of coordinates, studying the concrete case of polar coordinates to switch from the unit
disk domain to a simple square domain.

Remark. A rationale for using polar coordinates when dealing with boundary value problems on
a disk is that, of course, mesh generation is trivial for a square and boundary approximation is not
a concern. This will become in [NPDE, Chapter 3].

As a model problem we consider homogeneous Dirichlet problem for the Poisson equation [NPDE,
Eq. (2.5.15)]

−∆u = f in Ω , u = 0 on ∂Ω , (5.4.1)

on the unit disk

Ω = {x ∈ R2 : |x| < 1} . (5.4.2)

Here ∆ is the Laplace operator, see [NPDE, Rem. 2.5.14]. The variational (weak) formulation of
(5.4.1) has been discussed in [NPDE, Ex. 2.9.2].

The transformation from polar coordinates (r, ϕ), 0 ≤ r ≤ 1, 0 ≤ ϕ < 2π, to Cartesian coordi-
nates (x1, x2) ∈ R2 is given by the mapping(

x1

x2

)
= Φ(r, ϕ) := r

(
cosϕ
sinϕ

)
(5.4.3)

(cf. [NPDE, Eq. (2.4.21)]), and we have Ω = Φ(Ωp), with the tensor product domain

Ωp := [0, 1]× [0, 2π]. (5.4.4)

Before you start solving this problem, we suggest you to refresh your knowledge about the polar
coordinate example in [NPDE, § 2.4.20].

(5.4a) For a function u ∈ C1(Ω̄). Compute the Cartesian components of gradu =
(

∂u
∂x1

, ∂u
∂x2

)T

,

for u = u(r, ϕ) given in polar coordinates, in terms of the partial derivatives
∂u

∂r
and

∂u

∂ϕ
.

HINT: Use the chain rule for differentiation.
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(5.4b) Explain the origin of the r-factor in the integration formula in polar coordinates:∫
Ω

u(x) dx =

∫ 1

0

∫ 2π

0

u(r, ϕ)r dϕ dr. (5.4.5)

HINT: You may appeal to the transformation formula for multi-dimensional integrals that you
learned in your Analysis course.

(5.4c) As we learned in [NPDE, Section 2.9], the bilinear form associated with the homoge-
neous Dirichlet problem for the linear scalar 2nd-order differential operator −∆ on Ω reads:

a(u, v) =

∫
Ω

gradu(x) · grad v(x) dx , u, v ∈ H1
0 (Ω) . (5.4.6)

Rewrite it in terms of polar coordinates, that is, for u = u(r, ϕ) and v = v(r, ϕ), in terms of partial
derivatives with respect to r and ϕ, and by means of an integral over the domain Ωp as given in
(5.4.4).

(5.4d) Let Ωp be as in (5.4.4). Assuming that up ∈ C1(Ω̄p), what further condition does up

have to satisfy in order to ensure that |u|H1(Ω) < ∞, where u(x1, x2) := up(r(x1, x2), ϕ(x1, x2)) :
Ω → R (and (r, ϕ) are the polar coordinates on Ω as given in (5.4.3))?

HINT: Use the results from subproblem (5.4c).

Write u ∈ H1
0 (Ω) for the weak solution on (5.4.1), and up : Ωp → R for its transformation into

polar coordinates: up(r, ϕ) := u(x1(r, ϕ), x2(r, ϕ)).

(5.4e) What linear variational problem on Ωp is solved by up? Assume that also f is given in
polar coordinates: f = f(r, ϕ).

HINT: The results from task (5.4c) may come handy.

Now we assume that the source function enjoys rotational symmetry, i.e. f = f(r), with no
dependence on ϕ. Then the solution to (5.4.1) will also be rotationally symmetric: up = up(r),
0 ≤ r ≤ 1.

(5.4f) What variational problem (in polar coordinates) has to be satisfied by the rotationally
symmetric solution up = up(r) of (5.4.1) in the case of f = f(r)?

(5.4g) The energy space for the variational problem from task (5.4f) is:

V :=

{
v ∈ L2(]0, 1[) :

∫ 1

0

r

∣∣∣∣dvdr (r)
∣∣∣∣2 dr < ∞, v(1) = 0

}
. (5.4.7)

Is the linear functional J : V → R given by the point evaluation J(v) = v(0) continuous on V ?

HINT: Follow the approach of [NPDE, § 2.4.20] and try to find a function v ∈ V with “v(0) =
∞”. It is worth studying [NPDE, § 2.4.20] carefully, because after transformation back to the
disk Ω, V can be regarded as the space of rotationally symmetric functions in H1

0 (Ω).
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(5.4h) Assuming that up ∈ C2([0, 1]), state the 2-point boundary value problem associated to
the variational formulation from task (5.4f).

HINT: The boundary conditions will look strange, but, in light of the discussion in [NPDE,
Rem. 2.3.6], the result of subproblem (5.4g) should make clear, why imposing boundary values
at 0 does not make sense.

Published on March 18.
To be submitted on March 25.
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