# Numerical Methods for Partial Differential Equations 

## Homework Problem Sheet 5

## Problem 5.1 Linear output functionals

In [NPDE, Section 2.2.3] we have seen that continuity ( $\rightarrow$ [NPDE, Def. 2.2.49]) of linear forms with respect to energy norms ( $\rightarrow$ [NPDE, Def. 2.2.38]) induced by symmetric positive definite bilinear forms ( $\rightarrow$ [NPDE, Def. 2.2.35]) is a key property. Thus, for elliptic boundary value problems, continuity of linear forms in Sobolev spaces is crucial.

For the point evaluation functional, we investigated its continuity in $H^{1}(\Omega)$ in [NPDE, Ex. 2.4.18], for the source functional $v \rightarrow \int_{\Omega} f v \mathrm{~d} \boldsymbol{x}$ continuity was studied in [NPDE, Section 2.3.3], whereas boundary functionals arising from non-homogeneous Neumann problems were examined in [NPDE, § 2.10.7].

In this problem we consider the linear functionals

$$
\begin{align*}
& J_{1}(v):=\int_{\Omega} \mathbf{c} \cdot \operatorname{grad} v(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}, \quad \mathbf{c} \in \mathbb{R}^{2},  \tag{5.1.1}\\
& J_{2}(v):=\int_{\Omega} v(\boldsymbol{x}) \mathrm{d} \boldsymbol{x},  \tag{5.1.2}\\
& J_{3}(v):=\int_{\partial \Omega} \operatorname{grad} v(\boldsymbol{x}) \cdot \boldsymbol{n}(\boldsymbol{x}) \mathrm{d} S(\boldsymbol{x}),  \tag{5.1.3}\\
& J_{4}(v):=\int_{\Omega} v\left(\frac{\boldsymbol{x}}{\|\boldsymbol{x}\|}\right) \mathrm{d} \boldsymbol{x} . \tag{5.1.4}
\end{align*}
$$

on the unit disk $\Omega=\left\{\boldsymbol{x} \in \mathbb{R}^{2}:\|\boldsymbol{x}\|<1\right\}$. These functionals all make sense when we apply them to smooth functions.

Please answer the following questions for (5.1.1)-(5.1.4).
(5.1a) Which of these functionals are continuous on $L^{2}(\Omega)$ ? If you suspect a functional to be continuous, try to prove it. If you think, it is not continuous, try to find a counterexample as in [NPDE, § 2.4.20].

Hint: The functional (5.1.4) can be rewritten in terms of an integral over $\partial \Omega$.
Solution: The functional $J_{1}$ is not continuous on $L^{2}(\Omega)$.
Consider, for instance, $v(\boldsymbol{x})=\log \left(-\log \left(\sqrt{x_{1}^{2}+x_{2}^{2}}\right)\right) \in L^{2}(\Omega)$, with $\boldsymbol{x}=\left(x_{1}, x_{2}\right)$, i.e., in polar
coordinates, $\tilde{v}(r, \varphi)=\log (-\log (r)), r \in[0,1], \varphi \in[0,2 \pi)$. Then

$$
\operatorname{grad} v(\boldsymbol{x})=\operatorname{grad}(\tilde{v}(r, \varphi))=\left(\begin{array}{l}
\frac{\partial \tilde{v}}{\partial r} \\
\frac{\partial r}{\partial x_{1}} \\
\frac{\partial \tilde{v}}{\partial r} \\
\frac{\partial r}{\partial x_{2}}
\end{array}\right)=\binom{\frac{\cos (\varphi)}{r^{2} \log (r)}}{\frac{\sin (\varphi)}{r^{2} \log (r)}}
$$

and

$$
J_{1}(v)=J_{1}(\tilde{v})=\int_{0}^{2 \pi} \int_{0}^{1}\left(c_{1} \frac{\cos (\varphi)}{r^{2} \log (r)}+c_{2} \frac{\sin (\varphi)}{r^{2} \log (r)}\right) r \mathrm{~d} r \mathrm{~d} \varphi=-\infty
$$

The functional $J_{2}$ is continuous on $L^{2}(\Omega)$. Indeed, using the Cauchy-Schwarz inequality we obtain:

$$
\left|\int_{\Omega} v(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}\right| \leq|\Omega|\|v\|_{L^{2}(\Omega)}, \quad \text { for all } v \in L^{2}(\Omega)
$$

The functional $J_{3}$ is not continuous on $L^{2}(\Omega)$.
To see this, we take the function $v(\boldsymbol{x})=\log (1-\|x\|)$. We have that

$$
\int_{\Omega} v^{2}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}=2 \pi \int_{0}^{1} \log ^{2}(1-r) r \mathrm{~d} r<+\infty
$$

and thus $v \in L^{2}(\Omega)$. However, $\operatorname{grad} u=-\frac{x}{\|\boldsymbol{x}\|(1-\|\boldsymbol{x}\|)}$ and

$$
\int_{\partial \Omega} \operatorname{grad} v(\boldsymbol{x}) \cdot \boldsymbol{n}(\boldsymbol{x}) \mathrm{d} S(\boldsymbol{x})=-\int_{\partial \Omega} \frac{\boldsymbol{x}}{\|\boldsymbol{x}\|(1-\|\boldsymbol{x}\|)} \cdot \frac{\boldsymbol{x}}{\|\boldsymbol{x}\|} \mathrm{d} S(\boldsymbol{x})=-\int_{\partial \Omega} \frac{1}{1-\|\boldsymbol{x}\|}=-\infty .
$$

The functional $J_{4}$ can be rewritten as

$$
\begin{aligned}
J_{4}(v) & =\int_{\Omega} v\left(\frac{\boldsymbol{x}}{\|\boldsymbol{x}\|}\right) \mathrm{d} \boldsymbol{x}=\int_{0}^{1} \int_{0}^{2 \pi} v(\cos \phi, \sin \phi) r \mathrm{~d} \phi \mathrm{~d} r= \\
& =\int_{0}^{2 \pi} v(\cos \phi, \sin \phi) \mathrm{d} \phi=\int_{\partial \Omega} v(\boldsymbol{x}) \mathrm{d} S(\boldsymbol{x}) .
\end{aligned}
$$

If we consider again $v(\boldsymbol{x})=\log (1-\|\boldsymbol{x}\|) \in L^{2}(\Omega)$, then $\int_{\partial \Omega} \log (1-\|\boldsymbol{x}\|) \mathrm{d} S(\boldsymbol{x})=-\infty$, which means that $J_{4}$ is not continuous on $L^{2}(\Omega)$.
(5.1b) Solve subproblem (5.1a), now with $L^{2}(\Omega)$ replaced with the Sobolev space $H^{1}(\Omega)$.

Hint: The standard tools for proving continuity of linear functionals on Sobolev spaces are the Cauchy-Schwarz inequality [NPDE, Eq. (2.2.39)] and trace theorems like [NPDE, Thm. 2.10.8].
Solution: $J_{1}$ is continuous on $H^{1}(\Omega)$ :

$$
\begin{aligned}
\left|J_{1}(v)\right| & \leq\|\mathbf{c}\|_{\mathbb{R}^{2}} \int_{\Omega}\|\operatorname{grad} v\|_{\mathbb{R}^{2}} \mathrm{~d} \boldsymbol{x} \leq \\
& \leq\|\mathbf{c}\|_{\mathbb{R}^{2}}|\Omega||v|_{H^{1}(\Omega)} \leq \\
& \leq\|\mathbf{c}\|_{\mathbb{R}^{2}}|\Omega|\|v\|_{H^{1}(\Omega)}, \quad \text { for all } v \in H^{1}(\Omega)
\end{aligned}
$$

where in the first and second step we have used Cauchy-Schwarz inequality.

Also $J_{2}$ is continuous on $H^{1}(\Omega)$. Indeed, using Cauchy-Schwarz inequality we obtain:

$$
\left|J_{2}(v)\right|=\left|\int_{\Omega} v(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}\right| \leq|\Omega|\|v\|_{L^{2}(\Omega)} \leq|\Omega|\|v\|_{H^{1}(\Omega)}, \quad \text { for all } v \in H^{1}(\Omega)
$$

$J_{3}$ is not continuous on $H^{1}(\Omega)$. For example, if we take $v(\boldsymbol{x})=(1-\|\boldsymbol{x}\|) \log (1-\|\boldsymbol{x}\|)$, then $\operatorname{grad} v=-\frac{\boldsymbol{x}}{\|\boldsymbol{x}\|}(\log (1-\|\boldsymbol{x}\|+1))$ and therefore

$$
\int_{\partial \Omega} \operatorname{grad} v(\boldsymbol{x}) \cdot \boldsymbol{x}(\boldsymbol{x}) \mathrm{d} S(\boldsymbol{x})=-\int_{\partial \Omega} \log (1-\|x\|)+1 \mathrm{~d} S(\boldsymbol{x})=+\infty .
$$

$J_{4}$ is continuous on $H^{1}(\Omega)$ :

$$
\begin{aligned}
\left|\int_{\Omega} v\left(\frac{\boldsymbol{x}}{\|\boldsymbol{x}\|}\right) \mathrm{d} \boldsymbol{x}\right| & =\left|\int_{\partial \Omega} v(\boldsymbol{x}) \mathrm{d} S(\boldsymbol{x})\right| \leq \\
& \leq|\partial \Omega|\|v\|_{L^{2}(\Omega)} \leq \\
& \leq|\partial \Omega| C(\Omega) \sqrt{\|v\|_{L^{2}(\Omega)}\|v\|_{H^{1}(\Omega)}} \leq \\
& \leq|\partial \Omega| C(\Omega)\|v\|_{H^{1}(\Omega)}
\end{aligned}
$$

for all $v \in H^{1}(\Omega)$, where for the first inequality we have used Cauchy-Schwarz inequality, and for the second one we have used the multiplicative trace inequality ([NPDE, Thm. 2.10.8]).

## Problem 5.2 Heat Conduction with Non-Local Boundary Conditions

This problem is meant to practice the conversion of a variational problem into a boundary value for a partial differential equation, see [NPDE, Section 2.5] and the extraction of boundary conditions hidden in the variational formulation as in [NPDE, Ex. 2.5.18].

Concretely, we consider the modelling of a two-dimensional cross-section of a submerged insulated wire, see Figure 5.1. The wire has a central core of conducting material, say copper, which carries a current. Ohmic losses lead to heat generation in the copper. Copper conducts heat very well and, thus, the copper core can be assumed to have a uniform but unknown temperature.


Figure 5.1: Cross-section of a submerged wire.
The copper is surrounded by an annulus of insulator, some plastic, for example, which is again surrounded by water, which we assume to be at a constant temperature of 0 . We seek a mathematical model providing us with the temperature distribution within the insulation. Such a model
is given by the variational problem

$$
\begin{equation*}
u \in V_{0}: \int_{\Omega} \kappa(\mathbf{x}) \operatorname{grad} u(\mathbf{x}) \cdot \operatorname{grad} v(\mathbf{x}) \mathrm{d} \mathbf{x}=\int_{\Gamma_{1}} v(\mathbf{x}) \mathrm{d} S, \quad \forall v \in V_{0} \tag{5.2.1}
\end{equation*}
$$

where the heat conductivity $\kappa$ is uniformly positive ( $\rightarrow$ [NPDE, Def. 2.2.15]) and bounded, and with

$$
V_{0}=\left\{v \in H^{1}(\Omega)|v|_{\Gamma_{0}}=0,\left.v\right|_{\Gamma_{1}}=\text { const }\right\} .
$$

(5.2a) Determine a bilinear form a and linear form $\ell$ so that (5.2.1) becomes an abstract linear variational problem a $(u, v)=\ell(v)$.

Solution: We have

$$
\mathrm{a}(u, v)=\int_{\Omega} \kappa(\mathbf{x}) \operatorname{grad} u(\mathbf{x}) \cdot \operatorname{grad} v(\mathbf{x}) \mathrm{d} \mathbf{x}
$$

and

$$
\ell(v)=\int_{\Gamma_{1}} v(\mathbf{x}) \mathrm{d} S
$$

(5.2b) Show that $\ell$ is continuous with respect to the energy norm induced by a, $c f$. [NPDE, Def. 2.2.49]. In the lecture we found this to be an essential condition for the well-posedness of a linear variational problem, see [NPDE, Lemma 2.2.47].
HINT: The energy norm is defined as in [NPDE, Def. 2.2.38], and $\ell$ must satisfy [NPDE, Eq. (2.2.48)] to be continuous with respect to this norm. Then use the trace theorem [NPDE, Thm. 2.10.8].

Solution: Using Cauchy-Schwarz, [NPDE, Thm. 2.10.8], Triangle inequality and [NPDE, Thm. 2.3.16],

$$
\begin{aligned}
|\ell(\mathbf{v})|^{2} & =\left|\int_{\Gamma_{1}} v(\mathbf{x}) \mathrm{d} \mathbf{x}\right|^{2} \leq\left(\int_{\Gamma_{1}} \mathrm{~d} \mathbf{x}\right)\left(\int_{\Gamma_{1}}|v(\mathbf{x})|^{2} \mathrm{~d} \mathbf{x}\right) \leq C_{0}\|v\|_{L^{2}\left(\Gamma_{1}\right)}^{2} \\
& =C_{0}\|v\|_{L^{2}(\partial \Omega)}^{2} \leq C_{1}\|v\|_{L^{2}(\Omega)}\|v\|_{H^{1}(\Omega)} \leq C_{1}\|v\|_{L^{2}(\Omega)}\left(\|v\|_{L^{2}(\Omega)}+|v|_{H^{1}(\Omega)}\right) \\
& \leq C_{2}|v|_{H^{1}(\Omega)}\left(C_{3}|v|_{H^{1}(\Omega)}+|v|_{H^{1}(\Omega)}\right) \leq C_{4}|v|_{H^{1}(\Omega)}^{2} \leq \frac{C_{4}}{\underline{\kappa}}\|v\|_{\mathrm{a}}^{2},
\end{aligned}
$$

which concludes the proof. Here, $\underline{\kappa}$ is a lower bound for $\kappa(\mathbf{x})$.
(5.2c) If $u$ solves (5.2.1) and is sufficiently smooth, it also satisfies a partial differential equation on $\Omega$. Find this equation.
Hint: Follow the approach of [NPDE, Section 2.5]: as test functions $v$ use functions in $C_{0}^{1}(\Omega)$, that is, they should be zero on both boundaries $\Gamma_{0}, \Gamma_{1}$. Use [NPDE, Thm. 2.5.9] (with grad $u$ in place of $j$ ). Argue what happens to the boundary terms. Then appeal to [NPDE, Lemma 2.5.12].
Solution: For $v \in C^{1}(\Omega)$ we have

$$
\begin{align*}
\int_{\Omega} \kappa(\mathbf{x}) \operatorname{grad} u(\mathbf{x}) \cdot \operatorname{grad} v(\mathbf{x}) \mathrm{d} \mathbf{x} & =\int_{\partial \Omega} \kappa(\mathbf{x}) v(\mathbf{x}) \operatorname{grad} u(\mathbf{x}) \cdot \mathbf{n}(\mathbf{x}) \mathrm{d} \mathbf{x}  \tag{5.2.2}\\
& -\int_{\Omega} v(\mathbf{x}) \operatorname{div} \kappa(\mathbf{x}) \operatorname{grad} u(\mathbf{x}) \mathrm{d} \mathbf{x}
\end{align*}
$$

Now if we further restrict ourselves to $v \in \mathcal{C}_{0}^{1}(\Omega)$, then $v=0$ on $\partial \Omega$. Using (5.2.2), we reduce (5.2.1) to

$$
-\int_{\Omega} v(\mathbf{x}) \operatorname{div} \kappa(\mathbf{x}) \operatorname{grad} u(\mathbf{x}) \mathrm{d} \mathbf{x}=0
$$

This holds for every $v \in \mathcal{C}_{0}^{1}(\Omega)$ and [NPDE, Lemma 2.5.12] implies $\operatorname{div} \kappa(\mathbf{x}) \operatorname{grad} u(\mathbf{x})=0$ in $\Omega$. Note that if $\kappa=$ const, then this becomes $-\Delta u(\mathbf{x})=0$, the familiar Laplacian.
(5.2d) The function $u$ from problem (5.2c) must also satisfy a certain non-local boundary condition implied by (5.2.1). Find this boundary condition.

Hint: Follow the strategy from [NPDE, Ex. 2.5.18] and use the PDE derived in the previous sub-problem.

Solution: First we notice that $u \in V_{0}$ means that we have a homogeneous Dirichlet boundary condition on $\Gamma_{0}$ (natural boundary condition). We still need to figure out the boundary condition on $\Gamma_{1}$. For $v \in V_{0}$ in (5.2.1) we first use (5.2.2) and then use the PDE derived in the previous subtask to cancel all terms inside the domain, the only remaining terms are then

$$
\int_{\partial \Omega} \kappa(\mathbf{x}) v(\mathbf{x}) \operatorname{grad} u(\mathbf{x}) \cdot \mathbf{n}(\mathbf{x}) \mathrm{d} \mathbf{x}=\int_{\Gamma_{1}} v(\mathbf{x}) \mathrm{d} \mathbf{x} .
$$

We note that the integral over $\Gamma_{0}$ will disappear because $v=0$ there. On $\Gamma_{1}$, we must have $v=$ const, which only shows that

$$
\int_{\Gamma_{1}} \kappa(\mathbf{x}) \operatorname{grad} u(\mathbf{x}) \cdot \mathbf{n}(\mathbf{x}) \mathrm{d} \mathbf{x}=\int_{\Gamma_{1}} 1 \mathrm{~d} \mathbf{x}=\left|\Gamma_{1}\right| .
$$

So, this boundary condition is non-local.
(5.2e) What is the physical interpretation of the boundary condition from (5.2d) in terms of heat conduction?

Solution: It specifies the total heat flux over the boundary $\Gamma_{1}$.

## Problem 5.3 Minimization of a Quadratic Functional

[NPDE, Section 2.2.3] introduced abstract quadratic minimization problems, see [NPDE, Def. 2.2.24] and [NPDE, Def. 2.2.29]. As concrete examples arising from equilibrium models we studied quadratic minimization problems posed on the Sobolev spaces $H_{0}^{1}(\Omega)$ and $H^{1}(\Omega)$ of scalar functions. In [NPDE, Section 2.4], we learned how to convert a quadratic minimization problem into variational form, see [NPDE, Eq. (2.4.9)]. [NPDE, Section 2.5] taught us how to use multidimensional integration by parts [NPDE, Thm. 2.5.9] to convert the linear variational problems on Sobolev spaces into a boundary value problems for $2^{\text {nd }}$-order elliptic PDEs. In this exercise we practise all these steps in the case of an "exotic" quadratic minimization problem.
We consider the quadratic functional

$$
\begin{equation*}
J(\mathbf{u})=\int_{\Omega}|\operatorname{div} \mathbf{u}(\mathbf{x})|^{2}+\|\mathbf{u}(\mathbf{x})\|^{2}+\mathbf{f}(\mathbf{x}) \cdot \mathbf{u}(\mathbf{x}) \mathrm{d} \mathbf{x} \tag{5.3.1}
\end{equation*}
$$

with $\Omega \subset \mathbb{R}^{3}$ bounded, and for functions $\mathbf{u}: \Omega \rightarrow \mathbb{R}^{3}$, that is, $J$ takes vector field arguments.
(5.3a) Identify the bilinear form a and the linear form $\ell$ in the quadratic functional $J, c f$. [NPDE, Def. 2.2.24].

Hint: See [NPDE, Def. 2.2.24].
Solution: We get

$$
\mathrm{a}(\mathbf{u}, \mathbf{v})=2 \int_{\Omega} \operatorname{div} \mathbf{u}(\mathbf{x}) \operatorname{div} \mathbf{v}(\mathbf{x}) \mathrm{d} \mathbf{x}+2 \int_{\Omega} \mathbf{u}(\mathbf{x}) \cdot \mathbf{v}(\mathbf{x}) \mathrm{d} \mathbf{x}
$$

and

$$
\ell(\mathbf{v})=-\int_{\Omega} \mathbf{f}(\mathbf{x}) \cdot \mathbf{v}(\mathbf{x}) \mathrm{d} \mathbf{x}
$$

(5.3b) Show that the bilinear form a from subproblem (5.3a) is symmetric and positive definite, see [NPDE, Def. 2.2.35].

Hint: See [NPDE, Eq. (2.2.26)] and [NPDE, Def. 2.2.35].
Solution: a is clearly symmetric. To show that it is positive definite, assume

$$
0=\mathrm{a}(\mathbf{u}, \mathbf{u})=2 \int_{\Omega}|\operatorname{div} \mathbf{u}(\mathbf{x})|^{2} \mathrm{~d} \mathbf{x}+2 \int_{\Omega}\|\mathbf{u}(\mathbf{x})\|^{2} \mathrm{~d} \mathbf{x}
$$

Since both integrands are nonnegative, we must have $\mathbf{u}(\mathbf{x})=0$ almost everywhere in $\Omega$, i.e., $\mathbf{u}=0$. This shows that $\mathrm{a}(\mathbf{u}, \mathbf{u})>0$ whenever $\mathbf{u} \neq 0$.
(5.3c) Show that the linear form $\ell$ from subproblem (5.3a) is continuous with respect to the energy norm induced by a.

HInT: The energy norm is defined as in [NPDE, Def. 2.2.38], and $\ell$ must satisfy [NPDE, Eq. (2.2.48)] to be continuous with respect to this norm.

Solution: Once more, the Cauchy-Schwartz inequality comes to our rescue.

$$
\begin{aligned}
|\ell(\mathbf{v})| & =\left|-\int_{\Omega} \mathbf{f}(\mathbf{x}) \cdot \mathbf{v}(\mathbf{x}) \mathrm{d} \mathbf{x}\right| \\
& \leq\left(\int_{\Omega}\|\mathbf{f}(\mathbf{x})\|^{2} \mathrm{~d} \mathbf{x}\right)^{\frac{1}{2}}\left(\int_{\Omega}\|\mathbf{v}(\mathbf{x})\|^{2} \mathrm{~d} \mathbf{x}\right)^{\frac{1}{2}} \\
& \leq\left(\int_{\Omega}\|\mathbf{f}(\mathbf{x})\|^{2} \mathrm{~d} \mathbf{x}\right)^{\frac{1}{2}}\left(\int_{\Omega}\|\mathbf{v}(\mathbf{x})\|^{2} \mathrm{~d} \mathbf{x}+\int_{\Omega}\|\operatorname{div} \mathbf{v}(x)\|^{2} \mathrm{~d} \mathbf{x}\right)^{\frac{1}{2}} \\
& =\left(\int_{\Omega}\|\mathbf{f}(\mathbf{x})\|^{2} \mathrm{~d} \mathbf{x}\right)^{\frac{1}{2}} \sqrt{\mathrm{a}(\mathbf{v}, \mathbf{v})}
\end{aligned}
$$

(5.3d) Explain why the Sobolev space

$$
H(\operatorname{div}, \Omega):=\left\{\mathbf{v}: \Omega \rightarrow \mathbb{R}^{3} \text { integrable }\left.\left|\int_{\Omega}\right| \operatorname{div} \mathbf{v}\right|^{2}+\|\mathbf{v}\|^{2} \mathrm{~d} \mathbf{x}<\infty\right\}
$$

provides the right framework for studying the minimization problem for the functional $J$ from (5.3.1).

Solution: This is exactly the space

$$
\left\{\mathbf{v}: \Omega \rightarrow \mathbb{R}^{3} \text { integrable } \mid\|\mathbf{v}\|_{\mathrm{a}}<\infty\right\}
$$

(5.3e) Derive and state the linear variational problem equivalent to the minimization problem

$$
\mathbf{u}_{*}=\underset{\mathbf{v} \in H(\operatorname{div}, \Omega)}{\operatorname{argmin}} J(\mathbf{v}) .
$$

Hint: See [NPDE, Eq. (2.4.8)] and [NPDE, Eq. (2.4.9)].
Solution: Find $\mathbf{u} \in H(\operatorname{div}, \Omega)$ such that

$$
\begin{equation*}
\mathrm{a}(\mathbf{u}, \mathbf{v})=2 \int_{\Omega} \operatorname{div} \mathbf{u}(\mathbf{x}) \operatorname{div} \mathbf{v}(\mathbf{x}) \mathrm{d} \mathbf{x}+2 \int_{\Omega} \mathbf{u}(\mathbf{x}) \cdot \mathbf{v}(\mathbf{x}) \mathrm{d} \mathbf{x}=-\int_{\Omega} \mathbf{f}(\mathbf{x}) \cdot \mathbf{v}(\mathbf{x}) \mathrm{d} \mathbf{x}=\ell(\mathbf{v}) \tag{5.3.2}
\end{equation*}
$$

for all $\mathbf{v} \in H(\operatorname{div}, \Omega)$.
(5.3f) Derive the partial differential equation on $\Omega$ that arises from the variational problem from (5.3e).

Hint: Follow the approach of [NPDE, Section 2.5], in particular [NPDE, Ex. 2.5.18]: as test functions $\mathbf{v}$ use vector fields in $\left(\mathcal{C}_{0}^{1}(\Omega)\right)^{3}$, that is, they should be zero on the boundary. Use [NPDE, Thm. 2.5.9] (with div $\mathbf{u}$ in place of $v$ and $\mathbf{v}$ in place of $\mathbf{j}$ ) in order to "shift the div from $\mathbf{v}$ onto $\operatorname{div} u$ as $-\operatorname{grad} "$. Argue, what happens to the boundary terms. Then appeal to [NPDE, Lemma 2.5.12].

Solution: After using [NPDE, Thm. 2.5.9] on (5.3.2), we get

$$
\begin{equation*}
2 \int_{\partial \Omega} \mathbf{v}(\mathbf{x}) \cdot \mathbf{n}(\mathbf{x}) \operatorname{div} \mathbf{u}(\mathbf{x}) \mathrm{d} \mathbf{x}+\int_{\Omega} \mathbf{v}(\mathbf{x}) \cdot[2 \mathbf{u}(\mathbf{x})-2 \operatorname{grad}(\operatorname{div} \mathbf{u}(\mathbf{x}))+\mathbf{f}(\mathbf{x})] \mathrm{d} \mathbf{x}=0 \tag{5.3.3}
\end{equation*}
$$

By choosing $\mathbf{v}=0$ on $\partial \Omega$, the boundary term will disappear, and since $\mathbf{v}$ is otherwise arbitrary, we obtain

$$
2 \mathbf{u}(\mathbf{x})-2 \operatorname{grad}(\operatorname{div} \mathbf{u}(\mathbf{x}))=-\mathbf{f}(\mathbf{x})
$$

in $\Omega$.
(5.3g) The variational problem from (5.3e) also implies boundary conditions. Which?

HINT: Follow the strategy from [NPDE, Ex. 2.5.18] and use the PDE derived in subproblem (5.3f).
Solution: According to what we found in the last problem, (5.3.3) reduces to

$$
\int_{\partial \Omega} 2 \mathbf{v}(\mathbf{x}) \cdot \mathbf{n}(\mathbf{x}) \operatorname{div} \mathbf{u}(\mathbf{x}) \mathrm{d} \mathbf{x}=0
$$

from which we obtain the boundary condition

$$
\operatorname{div} \mathbf{u}(\mathbf{x})=0
$$

on $\partial \Omega$.

## Problem 5.4 Poisson equation in polar coordinates

In the problem we will come across an important case of transformation of the domain of a boundary value problem prior to its discretization. We interpret the domain transformation as a change of coordinates, studying the concrete case of polar coordinates to switch from the unit disk domain to a simple square domain.

Remark. A rationale for using polar coordinates when dealing with boundary value problems on a disk is that, of course, mesh generation is trivial for a square and boundary approximation is not a concern. This will become in [NPDE, Chapter 3].

As a model problem we consider homogeneous Dirichlet problem for the Poisson equation [NPDE, Eq. (2.5.15)]

$$
\begin{equation*}
-\Delta u=f \quad \text { in } \Omega, \quad u=0 \quad \text { on } \partial \Omega, \tag{5.4.1}
\end{equation*}
$$

on the unit disk

$$
\begin{equation*}
\Omega=\left\{\boldsymbol{x} \in \mathbb{R}^{2}:|\boldsymbol{x}|<1\right\} . \tag{5.4.2}
\end{equation*}
$$

Here $\Delta$ is the Laplace operator, see [NPDE, Rem. 2.5.14]. The variational (weak) formulation of (5.4.1) has been discussed in [NPDE, Ex. 2.9.2].

The transformation from polar coordinates $(r, \phi), 0 \leq r \leq 1,0 \leq \phi<2 \pi$, to Cartesian coordinates $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ is given by the mapping

$$
\begin{equation*}
\binom{x_{1}}{x_{2}}=\boldsymbol{\Phi}(r, \phi):=r\binom{\cos \phi}{\sin \phi} \tag{5.4.3}
\end{equation*}
$$

(cf. [NPDE, Eq. (2.4.21)]), and we have $\Omega=\boldsymbol{\Phi}\left(\Omega_{p}\right)$, with the tensor product domain

$$
\begin{equation*}
\Omega_{p}:=[0,1] \times[0,2 \pi] . \tag{5.4.4}
\end{equation*}
$$

Before you start solving this problem, we suggest you to refresh your knowledge about the polar coordinate example in [NPDE, § 2.4.20].
(5.4a) For a function $u \in C^{1}(\bar{\Omega})$. Compute the Cartesian components of grad $u=\left(\frac{\partial u}{\partial x_{1}}, \frac{\partial u}{\partial x_{2}}\right)^{T}$, for $u=u(r, \phi)$ given in polar coordinates, in terms of the partial derivatives $\frac{\partial u}{\partial r}$ and $\frac{\partial u}{\partial \phi}$.
HINT: Use the chain rule for differentiation.
Solution: We have:

$$
\begin{aligned}
& \frac{\partial u}{\partial r}=\frac{\partial u}{\partial x_{1}} \frac{\partial x_{1}}{\partial r}+\frac{\partial u}{\partial x_{2}} \frac{\partial x_{2}}{\partial r}=\cos \phi \frac{\partial u}{\partial x_{1}}+\sin \phi \frac{\partial u}{\partial x_{2}} \\
& \frac{\partial u}{\partial \phi}=\frac{\partial u}{\partial x_{1}} \frac{\partial x_{1}}{\partial \phi}+\frac{\partial u}{\partial x_{2}} \frac{\partial x_{2}}{\partial \phi}=-r \sin \phi \frac{\partial u}{\partial x_{1}}+r \cos \phi \frac{\partial u}{\partial x_{2}}
\end{aligned}
$$

In matrix-vector notation, we can write:

$$
\left[\begin{array}{l}
\frac{\partial u}{\partial r}  \tag{5.4.5}\\
\frac{\partial u}{\partial \phi}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
\cos \phi & \sin \phi \\
-r \sin \phi & +r \cos \phi
\end{array}\right]}_{:=D \boldsymbol{\Phi}^{T}}\left[\begin{array}{l}
\frac{\partial u}{\partial x_{1}} \\
\frac{\partial u}{\partial x_{2}}
\end{array}\right],
$$

and thus

$$
\left[\begin{array}{l}
\frac{\partial u}{\partial x_{1}}  \tag{5.4.6}\\
\frac{\partial u}{\partial x_{2}}
\end{array}\right]=\underbrace{\frac{1}{r}\left[\begin{array}{cc}
r \cos \phi & -\sin \phi \\
r \sin \phi & +\cos \phi
\end{array}\right]}_{:=D \boldsymbol{\Phi}^{-T}}\left[\begin{array}{l}
\frac{\partial u}{\partial r} \\
\frac{\partial u}{\partial \phi}
\end{array}\right] .
$$

(5.4b) Explain the origin of the $r$-factor in the integration formula in polar coordinates:

$$
\begin{equation*}
\int_{\Omega} u(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}=\int_{0}^{1} \int_{0}^{2 \pi} u(r, \phi) r \mathrm{~d} \phi \mathrm{~d} r \tag{5.4.7}
\end{equation*}
$$

Hint: You may appeal to the transformation formula for multi-dimensional integrals that you learned in your Analysis course.
Solution: According to the transformation formula for multi-dimensional integrals, it holds that $\mathrm{d} \boldsymbol{x}=\operatorname{det} D \boldsymbol{\Phi} \mathrm{~d} \phi \mathrm{~d} r$. From (5.4.6), it follows that $\operatorname{det} D \boldsymbol{\Phi}=r \cos ^{2} \phi+r \sin ^{2} \phi=r$, which explains the factor in (5.4.7).
Alternative: geometric argument, area of angular sectors grows linearly with $r$.
(5.4c) As we learned in [NPDE, Section 2.9], the bilinear form associated with the homogeneous Dirichlet problem for the linear scalar 2nd-order differential operator $-\Delta$ on $\Omega$ reads:

$$
\begin{equation*}
\mathrm{a}(u, v)=\int_{\Omega} \operatorname{grad} u(\boldsymbol{x}) \cdot \operatorname{grad} v(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}, \quad u, v \in H_{0}^{1}(\Omega) \tag{5.4.8}
\end{equation*}
$$

Rewrite it in terms of polar coordinates, that is, for $u=u(r, \phi)$ and $v=v(r, \phi)$, in terms of partial derivatives with respect to $r$ and $\phi$, and by means of an integral over the domain $\Omega_{p}$ as given in (5.4.4).

Solution: Let $\operatorname{grad}_{p}=\left(\frac{\partial}{\partial r}, \frac{\partial}{\partial \phi}\right)^{T}$.
With the help of (5.4.6) and (5.4.7), we have:

$$
\begin{align*}
\int_{\Omega} \operatorname{grad} u \cdot \operatorname{grad} v \mathrm{~d} \boldsymbol{x} & =\int_{0}^{1} \int_{0}^{2 \pi}\left(D \boldsymbol{\Phi}^{-T} \operatorname{grad}_{p} u\right) \cdot\left(D \boldsymbol{\Phi}^{-T} \operatorname{grad}_{p} v\right) \operatorname{det} D \boldsymbol{\Phi} \mathrm{~d} \phi \mathrm{~d} r= \\
& =\int_{0}^{1} \int_{0}^{2 \pi}\left[\begin{array}{l}
\frac{\partial u}{\partial r} \cos \phi-\frac{1}{r} \frac{\partial u}{\partial \phi} \sin \phi \\
\frac{\partial u}{\partial r} \sin \phi+\frac{1}{r} \frac{\partial u}{\partial \phi} \cos \phi
\end{array}\right] \cdot\left[\begin{array}{l}
\frac{\partial v}{\partial r} \cos \phi-\frac{1}{r} \frac{\partial v}{\partial \phi} \sin \phi \\
\frac{\partial v}{\partial r} \sin \phi+\frac{1}{r} \frac{\partial v}{\partial \phi} \cos \phi
\end{array}\right] r \mathrm{~d} \phi \mathrm{~d} r= \\
& =\int_{0}^{1} \int_{0}^{2 \pi}\left(\frac{\partial u}{\partial r} \frac{\partial v}{\partial r}+\frac{1}{r^{2}} \frac{\partial u}{\partial \phi} \frac{\partial v}{\partial \phi}\right) r \mathrm{~d} \phi \mathrm{~d} r= \\
& =\int_{0}^{1} \int_{0}^{2 \pi} r \frac{\partial u}{\partial r} \frac{\partial v}{\partial r}+\frac{1}{r} \frac{\partial u}{\partial \phi} \frac{\partial v}{\partial \phi} \mathrm{~d} \phi \mathrm{~d} r \tag{5.4.9}
\end{align*}
$$

(5.4d) Let $\Omega_{p}$ be as in (5.4.4). Assuming that $u_{p} \in C^{1}\left(\bar{\Omega}_{p}\right)$, what further condition does $u_{p}$ have to satisfy in order to ensure that $|u|_{H^{1}(\Omega)}<\infty$, where $u\left(x_{1}, x_{2}\right):=u_{p}\left(r\left(x_{1}, x_{2}\right), \phi\left(x_{1}, x_{2}\right)\right)$ : $\Omega \rightarrow \mathbb{R}$ (and $(r, \phi)$ are the polar coordinates on $\Omega$ as given in (5.4.3))?
HINT: Use the results from subproblem (5.4c).
Solution: Using (5.4.9):

$$
|u|_{H^{1}(\Omega)}^{2}=\int_{\Omega} \operatorname{grad} u(\boldsymbol{x}) \cdot \operatorname{grad} u(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}=\int_{\Omega_{p}} r\left(\frac{\partial u_{p}}{\partial r}(r, \phi)\right)^{2}+\frac{1}{r}\left(\frac{\partial u_{p}}{\partial \phi}(r, \phi)\right)^{2} \mathrm{~d} \phi \mathrm{~d} r
$$

In the second addend of the last integral, we have the factor $\frac{1}{r}$, which is not integrable at $r=0$. In order to have a finite integral, we need to integrate a quantity that behaves as $\frac{1}{r^{\alpha}}$, with $\alpha<1$.

This means that we need $\left(\frac{\partial u_{p}}{\partial \phi}(r, \phi)\right)^{2}=O\left(r^{\beta}\right)$ for $r \rightarrow 0$, with $\beta>0$. In other words, we need that $\frac{\partial u_{p}}{\partial \phi}(0, \phi)=0$.

Write $u \in H_{0}^{1}(\Omega)$ for the weak solution on (5.4.1), and $u_{p}: \Omega_{p} \rightarrow \mathbb{R}$ for its transformation into polar coordinates: $u_{p}(r, \phi):=u\left(x_{1}(r, \phi), x_{2}(r, \phi)\right)$.
(5.4e) What linear variational problem on $\Omega_{p}$ is solved by $u_{p}$ ? Assume that also $f$ is given in polar coordinates: $f=f(r, \phi)$.
Hint: The results from task (5.4c) may come handy.
Solution: The variational formulation on $\Omega_{p}$ reads:
Find $u_{p} \in V_{0, p}:=\left\{v_{p} \in H^{1}\left(\Omega_{p}\right): \frac{\partial v_{p}}{\partial \phi}(0, \phi)=0\right.$ and $v_{p}(1, \phi)=0$ for all $\left.\phi \in[0,2 \pi)\right\}$ such that

$$
\begin{equation*}
\underbrace{\int_{\Omega_{p}} r \frac{\partial u_{p}}{\partial r}(r, \phi) \frac{\partial v_{p}}{\partial r}(r, \phi)+\frac{1}{r} \frac{\partial u_{p}}{\partial \phi}(r, \phi) \frac{\partial v_{p}}{\partial \phi}(r, \phi) \mathrm{d} \phi \mathrm{~d} r}_{\mathrm{a}_{p}\left(u_{p}, v_{p}\right)}=\underbrace{\int_{\Omega_{p}} f(r, \phi) v_{p}(r, \phi) r \mathrm{~d} \phi \mathrm{~d} r}_{\ell\left(v_{p}\right)} \tag{5.4.10}
\end{equation*}
$$

for all $v_{p} \in V_{0, p}$.
Now we assume that the source function enjoys rotational symmetry, i.e. $f=f(r)$, with no dependence on $\phi$. Then the solution to (5.4.1) will also be rotationally symmetric: $u_{p}=u_{p}(r)$, $0 \leq r \leq 1$.
(5.4f) What variational problem (in polar coordinates) has to be satisfied by the rotationally symmetric solution $u_{p}=u_{p}(r)$ of (5.4.1) in the case of $f=f(r)$ ?
Solution: Since for the test functions too it would not make sense not to choose them to be rotationally symmetric, the variational formulation reads:

Find $u_{p} \in W:=\left\{v \in \mathcal{C}_{p w}^{1}([0,1]): v(1)=0\right\}$ such that:

$$
\begin{equation*}
\int_{0}^{1} r \frac{d u_{p}}{d r}(r) \frac{d v}{d r}(r) \mathrm{d} r=\int_{0}^{1} f(r) v(r) r \mathrm{~d} r \quad \text { for all } v \in W \tag{5.4.11}
\end{equation*}
$$

$\mathbf{( 5 . 4 g})$ The energy space for the variational problem from task (5.4f) is:

$$
\begin{equation*}
V:=\left\{v \in L^{2}(] 0,1[): \int_{0}^{1} r\left|\frac{d v}{d r}(r)\right|^{2} \mathrm{~d} r<\infty, v(1)=0\right\} . \tag{5.4.12}
\end{equation*}
$$

Is the linear functional $J: V \rightarrow \mathbb{R}$ given by the point evaluation $J(v)=v(0)$ continuous on $V$ ?
HINT: Follow the approach of [NPDE, § 2.4.20] and try to find a function $v \in V$ with " $v(0)=$ $\infty$ ". It is worth studying [NPDE, § 2.4.20] carefully, because after transformation back to the disk $\Omega, V$ can be regarded as the space of rotationally symmetric functions in $H_{0}^{1}(\Omega)$.
Solution: No, it is not. As seen in [NPDE, § 2.4.20], let us consider $v=\log \left|\log \frac{r}{e}\right|, r \neq 0$.
Then we have that $v \in V($ see [NPDE, § 2.4.20]) but $J(v)=v(0)=\infty$.
(5.4h) Assuming that $u_{p} \in \mathcal{C}^{2}([0,1])$, state the 2-point boundary value problem associated to the variational formulation from task (5.4f).

HINT: The boundary conditions will look strange, but, in light of the discussion in [NPDE, Rem. 2.3.6], the result of subproblem ( 5.4 g ) should make clear, why imposing boundary values at 0 does not make sense.

Solution: Integration by parts of (5.4.11) gives:

$$
-\int_{0}^{1} \frac{d}{d r}\left(r \frac{d u_{p}}{d r}\right)(r) v(r) \mathrm{d} r+\left[r \frac{d u_{p}}{d r}(r) v(r)\right]_{0}^{1}=\int_{0}^{1} r f(r) v(r) \mathrm{d} r
$$

For density argument, we can take $v$ such that $v(0)=v(1)=0$. Then the 2-point boundary value problem reads:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} r}\left(r \frac{\mathrm{~d}}{\mathrm{~d} r} u_{p}(r)\right) & =r f(r) \quad \text { in }] 0,1[, \\
u(1) & =0
\end{aligned}
$$

## Published on March 18.

To be submitted on March 25.

## References

[NPDE] Lecture Slides for the course "Numerical Methods for Partial Differential Equations". SVN revision \# 74461.
[1] M. Struwe. Analysis für Informatiker. Lecture notes, ETH Zürich, 2009. https://moodleapp1.net.ethz.ch $/ \mathrm{lms} / \mathrm{mod} /$ resource $/$ index.php?id=145.
[NCSE] Lecture Slides for the course "Numerical Methods for CSE".

Last modified on March 30, 2015

