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Problem 5.1 Linear output functionals

In [NPDE, Section 2.2.3] we have seen that continuity (→ [NPDE, Def. 2.2.49]) of linear forms

with respect to energy norms (→ [NPDE, Def. 2.2.38]) induced by symmetric positive definite

bilinear forms (→ [NPDE, Def. 2.2.35]) is a key property. Thus, for elliptic boundary value

problems, continuity of linear forms in Sobolev spaces is crucial.

For the point evaluation functional, we investigated its continuity in H1(Ω) in [NPDE, Ex. 2.4.18],

for the source functional v →
∫

Ω
fv dx continuity was studied in [NPDE, Section 2.3.3], whereas

boundary functionals arising from non-homogeneous Neumann problems were examined in [NPDE,

§ 2.10.7].

In this problem we consider the linear functionals

J1(v) :=

∫

Ω

c · grad v(x) dx , c ∈ R
2 , (5.1.1)

J2(v) :=

∫

Ω

v(x) dx , (5.1.2)

J3(v) :=

∫

∂Ω

grad v(x) · n(x) dS(x) , (5.1.3)

J4(v) :=

∫

Ω

v

(
x

‖x‖

)

dx . (5.1.4)

on the unit disk Ω = {x ∈ R
2 : ‖x‖ < 1}. These functionals all make sense when we apply

them to smooth functions.

Please answer the following questions for (5.1.1)–(5.1.4).

(5.1a) Which of these functionals are continuous on L2(Ω)? If you suspect a functional to be

continuous, try to prove it. If you think, it is not continuous, try to find a counterexample as in

[NPDE, § 2.4.20].

HINT: The functional (5.1.4) can be rewritten in terms of an integral over ∂Ω.

Solution: The functional J1 is not continuous on L2(Ω).

Consider, for instance, v(x) = log(− log(
√

x2
1 + x2

2)) ∈ L2(Ω), with x = (x1, x2), i.e., in polar
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coordinates, ṽ(r, ϕ) = log(− log(r)), r ∈ [0, 1],ϕ ∈ [0, 2π). Then

grad v(x) = grad(ṽ(r, ϕ)) =






∂ṽ

∂r

∂r

∂x1
∂ṽ

∂r

∂r

∂x2




 =

(
cos(ϕ)
r2 log(r)
sin(ϕ)

r2 log(r)

)

and

J1(v) = J1(ṽ) =

∫ 2π

0

∫ 1

0

(

c1
cos(ϕ)

r2 log(r)
+ c2

sin(ϕ)

r2 log(r)

)

r dr dϕ = −∞.

The functional J2 is continuous on L2(Ω). Indeed, using the Cauchy-Schwarz inequality we

obtain: ∣
∣
∣
∣

∫

Ω

v(x) dx

∣
∣
∣
∣
≤ |Ω|‖v‖L2(Ω), for all v ∈ L2(Ω).

The functional J3 is not continuous on L2(Ω).

To see this, we take the function v(x) = log(1− ‖x‖). We have that

∫

Ω

v2(x) dx = 2π

∫ 1

0

log2(1− r)r dr < +∞,

and thus v ∈ L2(Ω). However, grad u = − x

‖x‖(1−‖x‖)
and

∫

∂Ω

grad v(x) · n(x) dS(x) = −

∫

∂Ω

x

‖x‖(1− ‖x‖)
·

x

‖x‖
dS(x) = −

∫

∂Ω

1

1− ‖x‖
= −∞.

The functional J4 can be rewritten as

J4(v) =

∫

Ω

v

(
x

‖x‖

)

dx =

∫ 1

0

∫ 2π

0

v(cos φ, sinφ)r dφ dr =

=

∫ 2π

0

v(cos φ, sinφ) dφ =

∫

∂Ω

v(x) dS(x).

If we consider again v(x) = log(1−‖x‖) ∈ L2(Ω), then
∫

∂Ω
log(1−‖x‖) dS(x) = −∞, which

means that J4 is not continuous on L2(Ω).

(5.1b) Solve subproblem (5.1a), now with L2(Ω) replaced with the Sobolev space H1(Ω).

HINT: The standard tools for proving continuity of linear functionals on Sobolev spaces are the

Cauchy-Schwarz inequality [NPDE, Eq. (2.2.39)] and trace theorems like [NPDE, Thm. 2.10.8].

Solution: J1 is continuous on H1(Ω):

|J1(v)| ≤ ‖c‖
R2

∫

Ω

‖grad v‖
R2 dx ≤

≤ ‖c‖
R2 |Ω||v|H1(Ω) ≤

≤ ‖c‖
R2 |Ω|‖v‖H1(Ω), for all v ∈ H1(Ω),

where in the first and second step we have used Cauchy-Schwarz inequality.
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Also J2 is continuous on H1(Ω). Indeed, using Cauchy-Schwarz inequality we obtain:

|J2(v)| =

∣
∣
∣
∣

∫

Ω

v(x) dx

∣
∣
∣
∣
≤ |Ω|‖v‖L2(Ω) ≤ |Ω|‖v‖H1(Ω), for all v ∈ H1(Ω).

J3 is not continuous on H1(Ω). For example, if we take v(x) = (1 − ‖x‖) log(1 − ‖x‖), then

grad v = − x

‖x‖
(log(1− ‖x‖+ 1)) and therefore

∫

∂Ω

grad v(x) · x(x) dS(x) = −

∫

∂Ω

log(1− ‖x‖) + 1 dS(x) = +∞.

J4 is continuous on H1(Ω):
∣
∣
∣
∣

∫

Ω

v

(
x

‖x‖

)

dx

∣
∣
∣
∣
=

∣
∣
∣
∣

∫

∂Ω

v(x) dS(x)

∣
∣
∣
∣
≤

≤ |∂Ω|‖v‖L2(Ω) ≤

≤ |∂Ω|C(Ω)
√

‖v‖L2(Ω)‖v‖H1(Ω) ≤

≤ |∂Ω|C(Ω)‖v‖H1(Ω),

for all v ∈ H1(Ω), where for the first inequality we have used Cauchy-Schwarz inequality, and

for the second one we have used the multiplicative trace inequality ([NPDE, Thm. 2.10.8]).

Problem 5.2 Heat Conduction with Non-Local Boundary Conditions

This problem is meant to practice the conversion of a variational problem into a boundary value

for a partial differential equation, see [NPDE, Section 2.5] and the extraction of boundary condi-

tions hidden in the variational formulation as in [NPDE, Ex. 2.5.18].

Concretely, we consider the modelling of a two-dimensional cross-section of a submerged insu-

lated wire, see Figure 5.1. The wire has a central core of conducting material, say copper, which

carries a current. Ohmic losses lead to heat generation in the copper. Copper conducts heat very

well and, thus, the copper core can be assumed to have a uniform but unknown temperature.

�

�

�

�

�

water

conductor

insulator

Figure 5.1: Cross-section of a submerged wire.

The copper is surrounded by an annulus of insulator, some plastic, for example, which is again

surrounded by water, which we assume to be at a constant temperature of 0. We seek a mathe-

matical model providing us with the temperature distribution within the insulation. Such a model
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is given by the variational problem

u ∈ V0 :

∫

Ω

κ(x) gradu(x) · grad v(x) dx =

∫

Γ1

v(x) dS , ∀v ∈ V0, (5.2.1)

where the heat conductivity κ is uniformly positive (→ [NPDE, Def. 2.2.15]) and bounded, and

with

V0 =
{
v ∈ H1(Ω)

∣
∣ v|Γ0

= 0, v|Γ1
= const

}
.

(5.2a) Determine a bilinear form a and linear form ℓ so that (5.2.1) becomes an abstract linear

variational problem a(u, v) = ℓ(v).

Solution: We have

a(u, v) =

∫

Ω

κ(x) gradu(x) · grad v(x) dx,

and

ℓ(v) =

∫

Γ1

v(x) dS.

(5.2b) Show that ℓ is continuous with respect to the energy norm induced by a, cf. [NPDE,

Def. 2.2.49]. In the lecture we found this to be an essential condition for the well-posedness of a

linear variational problem, see [NPDE, Lemma 2.2.47].

HINT: The energy norm is defined as in [NPDE, Def. 2.2.38], and ℓ must satisfy [NPDE,

Eq. (2.2.48)] to be continuous with respect to this norm. Then use the trace theorem [NPDE,

Thm. 2.10.8].

Solution: Using Cauchy-Schwarz, [NPDE, Thm. 2.10.8], Triangle inequality and [NPDE,

Thm. 2.3.16],

|ℓ(v)|2 =

∣
∣
∣
∣

∫

Γ1

v(x) dx

∣
∣
∣
∣

2

≤

(∫

Γ1

dx

)(∫

Γ1

|v(x)|2 dx

)

≤ C0‖v‖
2
L2(Γ1)

= C0‖v‖
2
L2(∂Ω) ≤ C1‖v‖L2(Ω)‖v‖H1(Ω) ≤ C1‖v‖L2(Ω)

(

‖v‖L2(Ω) + |v|H1(Ω)

)

≤ C2|v|H1(Ω)

(

C3|v|H1(Ω) + |v|H1(Ω)

)

≤ C4|v|
2
H1(Ω) ≤

C4

κ
‖v‖2

a
,

which concludes the proof. Here, κ is a lower bound for κ(x).

(5.2c) If u solves (5.2.1) and is sufficiently smooth, it also satisfies a partial differential equa-

tion on Ω. Find this equation.

HINT: Follow the approach of [NPDE, Section 2.5]: as test functions v use functions in C1
0(Ω),

that is, they should be zero on both boundaries Γ0, Γ1. Use [NPDE, Thm. 2.5.9] (with gradu in

place of j). Argue what happens to the boundary terms. Then appeal to [NPDE, Lemma 2.5.12].

Solution: For v ∈ C1(Ω) we have

∫

Ω

κ(x) gradu(x) · grad v(x) dx =

∫

∂Ω

κ(x)v(x) gradu(x) · n(x) dx

−

∫

Ω

v(x) div κ(x) gradu(x) dx.

(5.2.2)
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Now if we further restrict ourselves to v ∈ C1
0(Ω), then v = 0 on ∂Ω. Using (5.2.2), we reduce

(5.2.1) to

−

∫

Ω

v(x) div κ(x) grad u(x) dx = 0.

This holds for every v ∈ C1
0(Ω) and [NPDE, Lemma 2.5.12] implies div κ(x) gradu(x) = 0 in

Ω. Note that if κ = const, then this becomes −∆u(x) = 0,the familiar Laplacian.

(5.2d) The function u from problem (5.2c) must also satisfy a certain non-local boundary

condition implied by (5.2.1). Find this boundary condition.

HINT: Follow the strategy from [NPDE, Ex. 2.5.18] and use the PDE derived in the previous

sub-problem.

Solution: First we notice that u ∈ V0 means that we have a homogeneous Dirichlet boundary

condition on Γ0 (natural boundary condition). We still need to figure out the boundary condition

on Γ1. For v ∈ V0 in (5.2.1) we first use (5.2.2) and then use the PDE derived in the previous

subtask to cancel all terms inside the domain, the only remaining terms are then

∫

∂Ω

κ(x)v(x) gradu(x) · n(x) dx =

∫

Γ1

v(x) dx.

We note that the integral over Γ0 will disappear because v = 0 there. On Γ1, we must have

v = const, which only shows that

∫

Γ1

κ(x) gradu(x) · n(x) dx =

∫

Γ1

1 dx = |Γ1|.

So, this boundary condition is non-local.

(5.2e) What is the physical interpretation of the boundary condition from (5.2d) in terms of

heat conduction?

Solution: It specifies the total heat flux over the boundary Γ1.

Problem 5.3 Minimization of a Quadratic Functional

[NPDE, Section 2.2.3] introduced abstract quadratic minimization problems, see [NPDE, Def. 2.2.24]

and [NPDE, Def. 2.2.29]. As concrete examples arising from equilibrium models we studied

quadratic minimization problems posed on the Sobolev spaces H1
0 (Ω) and H1(Ω) of scalar func-

tions. In [NPDE, Section 2.4], we learned how to convert a quadratic minimization problem into

variational form, see [NPDE, Eq. (2.4.9)]. [NPDE, Section 2.5] taught us how to use multidi-

mensional integration by parts [NPDE, Thm. 2.5.9] to convert the linear variational problems on

Sobolev spaces into a boundary value problems for 2nd-order elliptic PDEs. In this exercise we

practise all these steps in the case of an “exotic” quadratic minimization problem.

We consider the quadratic functional

J(u) =

∫

Ω

∣
∣ divu(x)

∣
∣
2
+ ‖u(x)‖2 + f(x) · u(x) dx , (5.3.1)

with Ω ⊂ R
3 bounded, and for functions u : Ω → R

3, that is, J takes vector field arguments.
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(5.3a) Identify the bilinear form a and the linear form ℓ in the quadratic functional J , cf.

[NPDE, Def. 2.2.24].

HINT: See [NPDE, Def. 2.2.24].

Solution: We get

a(u,v) = 2

∫

Ω

divu(x) divv(x) dx+ 2

∫

Ω

u(x) · v(x) dx,

and

ℓ(v) = −

∫

Ω

f(x) · v(x) dx.

(5.3b) Show that the bilinear form a from subproblem (5.3a) is symmetric and positive definite,

see [NPDE, Def. 2.2.35].

HINT: See [NPDE, Eq. (2.2.26)] and [NPDE, Def. 2.2.35].

Solution: a is clearly symmetric. To show that it is positive definite, assume

0 = a(u,u) = 2

∫

Ω

∣
∣divu(x)

∣
∣
2
dx+ 2

∫

Ω

‖u(x)‖2 dx.

Since both integrands are nonnegative, we must have u(x) = 0 almost everywhere in Ω, i.e.,

u = 0. This shows that a(u,u) > 0 whenever u 6= 0.

(5.3c) Show that the linear form ℓ from subproblem (5.3a) is continuous with respect to the

energy norm induced by a.

HINT: The energy norm is defined as in [NPDE, Def. 2.2.38], and ℓ must satisfy [NPDE,

Eq. (2.2.48)] to be continuous with respect to this norm.

Solution: Once more, the Cauchy-Schwartz inequality comes to our rescue.

|ℓ(v)| =

∣
∣
∣
∣
−

∫

Ω

f(x) · v(x) dx

∣
∣
∣
∣

≤

(∫

Ω

‖f(x)‖2 dx

) 1

2

(∫

Ω

‖v(x)‖2 dx

) 1

2

≤

(∫

Ω

‖f(x)‖2 dx

) 1

2

(∫

Ω

‖v(x)‖2 dx+

∫

Ω

‖divv(x)‖2 dx

) 1

2

=

(∫

Ω

‖f(x)‖2 dx

) 1

2√

a(v,v)

(5.3d) Explain why the Sobolev space

H(div,Ω) :=

{

v : Ω → R
3 integrable

∣
∣
∣
∣

∫

Ω

∣
∣ div v

∣
∣2 + ‖v‖2 dx < ∞

}

.

provides the right framework for studying the minimization problem for the functional J from

(5.3.1).

Solution: This is exactly the space
{
v : Ω → R

3 integrable
∣
∣ ‖v‖

a
< ∞

}
.
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(5.3e) Derive and state the linear variational problem equivalent to the minimization problem

u∗ = argmin
v∈H(div,Ω)

J(v).

HINT: See [NPDE, Eq. (2.4.8)] and [NPDE, Eq. (2.4.9)].

Solution: Find u ∈ H(div,Ω) such that

a(u,v) = 2

∫

Ω

divu(x) div v(x) dx+2

∫

Ω

u(x)·v(x) dx = −

∫

Ω

f(x)·v(x) dx = ℓ(v) (5.3.2)

for all v ∈ H(div,Ω).

(5.3f) Derive the partial differential equation on Ω that arises from the variational problem

from (5.3e).

HINT: Follow the approach of [NPDE, Section 2.5], in particular [NPDE, Ex. 2.5.18]: as test

functions v use vector fields in (C1
0(Ω))

3, that is, they should be zero on the boundary. Use

[NPDE, Thm. 2.5.9] (with div u in place of v and v in place of j) in order to “shift the div from

v onto div u as − grad”. Argue, what happens to the boundary terms. Then appeal to [NPDE,

Lemma 2.5.12].

Solution: After using [NPDE, Thm. 2.5.9] on (5.3.2), we get

2

∫

∂Ω

v(x) · n(x) divu(x) dx+

∫

Ω

v(x) · [2u(x)− 2 grad(divu(x)) + f(x)] dx = 0. (5.3.3)

By choosing v = 0 on ∂Ω, the boundary term will disappear, and since v is otherwise arbitrary,

we obtain

2u(x)− 2 grad(divu(x)) = −f(x)

in Ω.

(5.3g) The variational problem from (5.3e) also implies boundary conditions. Which?

HINT: Follow the strategy from [NPDE, Ex. 2.5.18] and use the PDE derived in subproblem (5.3f).

Solution: According to what we found in the last problem, (5.3.3) reduces to

∫

∂Ω

2v(x) · n(x) divu(x) dx = 0,

from which we obtain the boundary condition

divu(x) = 0

on ∂Ω.

Problem 5.4 Poisson equation in polar coordinates

In the problem we will come across an important case of transformation of the domain of a

boundary value problem prior to its discretization. We interpret the domain transformation as a

change of coordinates, studying the concrete case of polar coordinates to switch from the unit

disk domain to a simple square domain.
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Remark. A rationale for using polar coordinates when dealing with boundary value problems on

a disk is that, of course, mesh generation is trivial for a square and boundary approximation is not

a concern. This will become in [NPDE, Chapter 3].

As a model problem we consider homogeneous Dirichlet problem for the Poisson equation [NPDE,

Eq. (2.5.15)]

−∆u = f in Ω , u = 0 on ∂Ω , (5.4.1)

on the unit disk

Ω = {x ∈ R
2 : |x| < 1} . (5.4.2)

Here ∆ is the Laplace operator, see [NPDE, Rem. 2.5.14]. The variational (weak) formulation of

(5.4.1) has been discussed in [NPDE, Ex. 2.9.2].

The transformation from polar coordinates (r, φ), 0 ≤ r ≤ 1, 0 ≤ φ < 2π, to Cartesian coordi-

nates (x1, x2) ∈ R
2 is given by the mapping

(
x1

x2

)

= Φ(r, φ) := r

(
cosφ
sin φ

)

(5.4.3)

(cf. [NPDE, Eq. (2.4.21)]), and we have Ω = Φ(Ωp), with the tensor product domain

Ωp := [0, 1]× [0, 2π]. (5.4.4)

Before you start solving this problem, we suggest you to refresh your knowledge about the polar

coordinate example in [NPDE, § 2.4.20].

(5.4a) For a function u ∈ C1(Ω̄). Compute the Cartesian components of grad u =
(

∂u
∂x1

, ∂u
∂x2

)T

,

for u = u(r, φ) given in polar coordinates, in terms of the partial derivatives
∂u

∂r
and

∂u

∂φ
.

HINT: Use the chain rule for differentiation.

Solution: We have:

∂u

∂r
=

∂u

∂x1

∂x1

∂r
+

∂u

∂x2

∂x2

∂r
= cos φ

∂u

∂x1

+ sin φ
∂u

∂x2

∂u

∂φ
=

∂u

∂x1

∂x1

∂φ
+

∂u

∂x2

∂x2

∂φ
= −r sinφ

∂u

∂x1

+ r cos φ
∂u

∂x2

.

In matrix-vector notation, we can write:






∂u

∂r
∂u

∂φ




 =

[
cosφ sinφ

−r sin φ +r cosφ

]

︸ ︷︷ ︸

:=DΦ
T






∂u

∂x1
∂u

∂x2




, (5.4.5)

and thus 




∂u

∂x1
∂u

∂x2




 =

1

r

[
r cosφ − sinφ
r sinφ +cosφ

]

︸ ︷︷ ︸

:=DΦ
−T






∂u

∂r
∂u

∂φ




. (5.4.6)
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(5.4b) Explain the origin of the r-factor in the integration formula in polar coordinates:

∫

Ω

u(x) dx =

∫ 1

0

∫ 2π

0

u(r, φ)r dφ dr. (5.4.7)

HINT: You may appeal to the transformation formula for multi-dimensional integrals that you

learned in your Analysis course.

Solution: According to the transformation formula for multi-dimensional integrals, it holds that

dx = detDΦ dφ dr. From (5.4.6), it follows that detDΦ = r cos2 φ + r sin2 φ = r, which

explains the factor in (5.4.7).

Alternative: geometric argument, area of angular sectors grows linearly with r.

(5.4c) As we learned in [NPDE, Section 2.9], the bilinear form associated with the homoge-

neous Dirichlet problem for the linear scalar 2nd-order differential operator −∆ on Ω reads:

a(u, v) =

∫

Ω

grad u(x) · grad v(x) dx , u, v ∈ H1
0 (Ω) . (5.4.8)

Rewrite it in terms of polar coordinates, that is, for u = u(r, φ) and v = v(r, φ), in terms of partial

derivatives with respect to r and φ, and by means of an integral over the domain Ωp as given in

(5.4.4).

Solution: Let gradp =

(
∂

∂r
,
∂

∂φ

)T

.

With the help of (5.4.6) and (5.4.7), we have:

∫

Ω

grad u · grad v dx =

∫ 1

0

∫ 2π

0

(DΦ
−T gradp u) · (DΦ

−T gradp v) detDΦ dφ dr =

=

∫ 1

0

∫ 2π

0






∂u

∂r
cos φ− 1

r

∂u

∂φ
sin φ

∂u

∂r
sinφ+ 1

r

∂u

∂φ
cosφ




 ·






∂v

∂r
cos φ− 1

r

∂v

∂φ
sinφ

∂v

∂r
sin φ+ 1

r

∂v

∂φ
cosφ




r dφ dr =

=

∫ 1

0

∫ 2π

0

(
∂u

∂r

∂v

∂r
+

1

r2
∂u

∂φ

∂v

∂φ

)

r dφ dr =

=

∫ 1

0

∫ 2π

0

r
∂u

∂r

∂v

∂r
+

1

r

∂u

∂φ

∂v

∂φ
dφ dr (5.4.9)

(5.4d) Let Ωp be as in (5.4.4). Assuming that up ∈ C1(Ω̄p), what further condition does up

have to satisfy in order to ensure that |u|H1(Ω) < ∞, where u(x1, x2) := up(r(x1, x2), φ(x1, x2)) :
Ω → R (and (r, φ) are the polar coordinates on Ω as given in (5.4.3))?

HINT: Use the results from subproblem (5.4c).

Solution: Using (5.4.9):

|u|2H1(Ω) =

∫

Ω

grad u(x) · grad u(x) dx =

∫

Ωp

r

(
∂up

∂r
(r, φ)

)2

+
1

r

(
∂up

∂φ
(r, φ)

)2

dφ dr.

In the second addend of the last integral, we have the factor 1
r
, which is not integrable at r = 0.

In order to have a finite integral, we need to integrate a quantity that behaves as 1
rα

, with α < 1.
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This means that we need

(
∂up

∂φ
(r, φ)

)2

= O(rβ) for r → 0, with β > 0. In other words, we

need that
∂up

∂φ
(0, φ) = 0.

Write u ∈ H1
0 (Ω) for the weak solution on (5.4.1), and up : Ωp → R for its transformation into

polar coordinates: up(r, φ) := u(x1(r, φ), x2(r, φ)).

(5.4e) What linear variational problem on Ωp is solved by up? Assume that also f is given in

polar coordinates: f = f(r, φ).

HINT: The results from task (5.4c) may come handy.

Solution: The variational formulation on Ωp reads:

Find up ∈ V0,p :=

{

vp ∈ H1(Ωp) :
∂vp

∂φ
(0, φ) = 0 and vp(1, φ) = 0 for all φ ∈ [0, 2π)

}

such that

∫

Ωp

r
∂up

∂r
(r, φ)

∂vp

∂r
(r, φ) +

1

r

∂up

∂φ
(r, φ)

∂vp

∂φ
(r, φ) dφ dr

︸ ︷︷ ︸

ap(up,vp)

=

∫

Ωp

f(r, φ)vp(r, φ)r dφ dr

︸ ︷︷ ︸

ℓ(vp)

(5.4.10)

for all vp ∈ V0,p.

Now we assume that the source function enjoys rotational symmetry, i.e. f = f(r), with no

dependence on φ. Then the solution to (5.4.1) will also be rotationally symmetric: up = up(r),
0 ≤ r ≤ 1.

(5.4f) What variational problem (in polar coordinates) has to be satisfied by the rotationally

symmetric solution up = up(r) of (5.4.1) in the case of f = f(r)?

Solution: Since for the test functions too it would not make sense not to choose them to be

rotationally symmetric, the variational formulation reads:

Find up ∈ W :=
{
v ∈ C1

pw([0, 1]) : v(1) = 0
}

such that:

∫ 1

0

r
dup

dr
(r)

dv

dr
(r) dr =

∫ 1

0

f(r)v(r)r dr for all v ∈ W. (5.4.11)

(5.4g) The energy space for the variational problem from task (5.4f) is:

V :=

{

v ∈ L2(]0, 1[) :

∫ 1

0

r

∣
∣
∣
∣

dv

dr
(r)

∣
∣
∣
∣

2

dr < ∞, v(1) = 0

}

. (5.4.12)

Is the linear functional J : V → R given by the point evaluation J(v) = v(0) continuous on V ?

HINT: Follow the approach of [NPDE, § 2.4.20] and try to find a function v ∈ V with “v(0) =
∞”. It is worth studying [NPDE, § 2.4.20] carefully, because after transformation back to the

disk Ω, V can be regarded as the space of rotationally symmetric functions in H1
0 (Ω).

Solution: No, it is not. As seen in [NPDE, § 2.4.20], let us consider v = log | log r
e
|, r 6= 0.

Then we have that v ∈ V (see [NPDE, § 2.4.20]) but J(v) = v(0) = ∞.
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(5.4h) Assuming that up ∈ C2([0, 1]), state the 2-point boundary value problem associated to

the variational formulation from task (5.4f).

HINT: The boundary conditions will look strange, but, in light of the discussion in [NPDE,

Rem. 2.3.6], the result of subproblem (5.4g) should make clear, why imposing boundary values

at 0 does not make sense.

Solution: Integration by parts of (5.4.11) gives:

−

∫ 1

0

d

dr

(

r
dup

dr

)

(r)v(r) dr +

[

r
dup

dr
(r)v(r)

]1

0

=

∫ 1

0

rf(r)v(r) dr.

For density argument, we can take v such that v(0) = v(1) = 0. Then the 2-point boundary value

problem reads:

d

dr

(

r
d

dr
up(r)

)

= rf(r) in ]0, 1[,

u(1) = 0.

Published on March 18.

To be submitted on March 25.
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