Spring Term 2015

R. Hiptmair' ETH Ziirich
L. Scarabosio Numerical Methods for Partial D-MATH
C. Urzua Torres Differential Equations

Homework Problem Sheet 5

Problem 5.1 Linear output functionals

In [NPDE, Section 2.2.3] we have seen that continuity (— [NPDE, Def. 2.2.49]) of linear forms
with respect to energy norms (— [NPDE, Def. 2.2.38]) induced by symmetric positive definite
bilinear forms (— [NPDE, Def. 2.2.35]) is a key property. Thus, for elliptic boundary value
problems, continuity of linear forms in Sobolev spaces is crucial.

For the point evaluation functional, we investigated its continuity in *(€2) in [NPDE, Ex. 2.4.18],
for the source functional v — fQ fvdax continuity was studied in [NPDE, Section 2.3.3], whereas

boundary functionals arising from non-homogeneous Neumann problems were examined in [NPDE,
§2.10.7].

In this problem we consider the linear functionals

J1(v) ::/c -gradv(z) dz, ce€R?, (5.1.1)
Q
:/ (5.1.2)
QO
:/gradv n(z) dS(z) , (5.1.3)

Q/“<||w||) ‘ G4

on the unit disk Q = {x € R? : ||z|| < 1}. These functionals all make sense when we apply
them to smooth functions.

Please answer the following questions for (5.1.1)—(5.1.4).

(5.1a)  Which of these functionals are continuous on L?(€2)? If you suspect a functional to be

continuous, try to prove it. If you think, it is not continuous, try to find a counterexample as in
[NPDE, § 2.4.20].

HINT: The functional (5.1.4) can be rewritten in terms of an integral over 0S2.

Solution: The functional .J; is not continuous on L*(€2).

Consider, for instance, v(x) = log(— log(/x? + z3)) € L*(Q), with & = (z;, x2), i.e., in polar
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coordinates, 9(r, ¢) = log(—log(r)), r € [0,1],¢ € [0,27). Then

ov Or
. orom | _ (Feen
gradv(z) = grad(o(r,¢)) = | 555, | = | "sntr)
—_— r2log(r)

or 0z,

and

J(0) = Jy () = /0 " /0 1 (cl rzﬁz(gfi) + CQT?E);@))MT dp = —oo.

The functional .J, is continuous on L?(€2). Indeed, using the Cauchy-Schwarz inequality we

obtain:
‘/ v(x)dx
Q

The functional J3 is not continuous on L*(12).

< Qo] 2y, forallve L*(9).

To see this, we take the function v(x) = log(1 — ||z||). We have that

1
/ v?(x)dx = 27r/ log(1 — r)rdr < +oo0,
Q 0

and thus v € L?(Q)). However, grad u = ; and

=z
ll]l (1=l

T T 1
f e o) a5) == [ o st == [ g =

The functional J4 can be rewritten as

z 1 p2n ' B
J4(v)—/ﬂv(m) d:c—/o /0 v(cos ¢, sinp)rde dr =

:AWU(COS¢,81H¢)d¢: v(x)dS(x).

o0

If we consider again v(x) = log(1— [|x||) € L*(2), then [,, log(1 — ||x||) dS(x) = —oco, which
means that .J; is not continuous on L?((2).

(5.1b)  Solve subproblem (5.1a), now with L*(£2) replaced with the Sobolev space H'(12).

HINT: The standard tools for proving continuity of linear functionals on Sobolev spaces are the
Cauchy-Schwarz inequality [NPDE, Eq. (2.2.39)] and trace theorems like [NPDE, Thm. 2.10.8].

Solution: J; is continuous on H'((2):

()] < lcllge / lgrad vy dz <
Q
S
< el el Forall v e (),

where in the first and second step we have used Cauchy-Schwarz inequality.
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Also J, is continuous on H!(). Indeed, using Cauchy-Schwarz inequality we obtain:

()] = ’ [ o(@)az

< QU] 20y < QN0 forallv e HY(Q).

Js is not continuous on H'(f2). For example, if we take v(x) = (1 — ||z||) log(1 — ||z||), then
gradv = — % (log(1 — ||| + 1)) and therefore

T
/aQ gradv(x) - x(x) dS(x) = — /aQ log(1 —||z]]) + 1dS(x) = +o0.

Jy is continuous on H*():

o) e

<

/ v(x)dS(x)
00
<109 [|v]l L2 () <

< 10210/l 2(gy 0l 2y <
< [0QICEQ) V] 11 g

for all v € H'(Q), where for the first inequality we have used Cauchy-Schwarz inequality, and
for the second one we have used the multiplicative trace inequality ((NPDE, Thm. 2.10.8]).

Problem 5.2 Heat Conduction with Non-Local Boundary Conditions

This problem is meant to practice the conversion of a variational problem into a boundary value
for a partial differential equation, see [NPDE, Section 2.5] and the extraction of boundary condi-
tions hidden in the variational formulation as in [NPDE, Ex. 2.5.18].

Concretely, we consider the modelling of a two-dimensional cross-section of a submerged insu-
lated wire, see Figure 5.1. The wire has a central core of conducting material, say copper, which
carries a current. Ohmic losses lead to heat generation in the copper. Copper conducts heat very
well and, thus, the copper core can be assumed to have a uniform but unknown temperature.

insulator

Figure 5.1: Cross-section of a submerged wire.

The copper is surrounded by an annulus of insulator, some plastic, for example, which is again
surrounded by water, which we assume to be at a constant temperature of 0. We seek a mathe-
matical model providing us with the temperature distribution within the insulation. Such a model
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is given by the variational problem
ueVp: / k(x) grad u(x) - grad v(x) dx = / v(x)dS, Vv e, (5.2.1)
Q I

where the heat conductivity « is uniformly positive (— [NPDE, Def. 2.2.15]) and bounded, and
with
Vo={veH(Q) }v|p0 =0, v|r, = const}.

(5.2a) Determine a bilinear form a and linear form ¢ so that (5.2.1) becomes an abstract linear
variational problem a(u, v) = £(v).
Solution: We have

a(u,v) = /Q/{(x) grad u(x) - grad v(x) dx,

and

(o) = /F | v(x) dS.

(5.2b)  Show that /¢ is continuous with respect to the energy norm induced by a, c¢f. [NPDE,
Def. 2.2.49]. In the lecture we found this to be an essential condition for the well-posedness of a
linear variational problem, see [NPDE, Lemma 2.2.47].

HINT: The energy norm is defined as in [NPDE, Def. 2.2.38], and ¢ must satisfy [NPDE,
Eq. (2.2.48)] to be continuous with respect to this norm. Then use the trace theorem [NPDE,
Thm. 2.10.8].

Solution:  Using Cauchy-Schwarz, [NPDE, Thm. 2.10.8], Triangle inequality and [NPDE,

Thm. 2.3.16],
2
/ v(x)dx| < (/ dx)( |U(x)|2dx) < Collol2aqey,
Iy I Iy

2
= Col[v]|72(00) < Cillvllr2@yllvlli @) < Cillvll 2y <||UHL2(Q) + |U‘H1(Q))

o) =

C

2 4y 02

< Coll o Cslvl i) + [0lmgy ) < Culvle) < —Ivll3s
K

which concludes the proof. Here, k is a lower bound for x(x).

(5.2¢) If u solves (5.2.1) and is sufficiently smooth, it also satisfies a partial differential equa-
tion on 2. Find this equation.

HINT: Follow the approach of [NPDE, Section 2.5]: as test functions v use functions in C3 (<),
that is, they should be zero on both boundaries I'y, [';. Use [NPDE, Thm. 2.5.9] (with grad « in
place of j). Argue what happens to the boundary terms. Then appeal to [NPDE, Lemma 2.5.12].

Solution: For v € C''(Q2) we have

/ k(x) grad u(x) - grad v(x) dx = / k(x)v(x) grad u(x) - n(x) dx
“ 00 (5.2.2)

— /Qv(x) div k(x) grad u(x) dx.
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Now if we further restrict ourselves to v € C(Q2), then v = 0 on 9. Using (5.2.2), we reduce
(5.2.1) to

— /Q v(x) div k(x) grad u(x) dx = 0.

This holds for every v € C}(2) and [NPDE, Lemma 2.5.12] implies div x(x) grad u(x) = 0 in
(). Note that if x = const, then this becomes —Awu(x) = 0,the familiar Laplacian.

(8.2d) The function u from problem (5.2c¢) must also satisfy a certain non-local boundary
condition implied by (5.2.1). Find this boundary condition.

HINT: Follow the strategy from [NPDE, Ex. 2.5.18] and use the PDE derived in the previous
sub-problem.

Solution: First we notice that u € V[, means that we have a homogeneous Dirichlet boundary
condition on I'y (natural boundary condition). We still need to figure out the boundary condition
on I';. Forv € Vjyin (5.2.1) we first use (5.2.2) and then use the PDE derived in the previous
subtask to cancel all terms inside the domain, the only remaining terms are then

[ ) wrad ) - n e = [ o)

We note that the integral over I'y will disappear because v = 0 there. On I';, we must have
v = const, which only shows that

/ k(x) grad u(x) - n(x) dx = / 1dx = |I'y].

Fl 1—‘1

So, this boundary condition is non-local.

(5.2e) What is the physical interpretation of the boundary condition from (5.2d) in terms of
heat conduction?

Solution: It specifies the total heat flux over the boundary I';.

Problem 5.3 Minimization of a Quadratic Functional

[NPDE, Section 2.2.3] introduced abstract quadratic minimization problems, see [NPDE, Def. 2.2.24]
and [NPDE, Def. 2.2.29]. As concrete examples arising from equilibrium models we studied
quadratic minimization problems posed on the Sobolev spaces H}(Q2) and H'(2) of scalar func-
tions. In [NPDE, Section 2.4], we learned how to convert a quadratic minimization problem into
variational form, see [NPDE, Eq. (2.4.9)]. [NPDE, Section 2.5] taught us how to use multidi-
mensional integration by parts [NPDE, Thm. 2.5.9] to convert the linear variational problems on
Sobolev spaces into a boundary value problems for 2™-order elliptic PDEs. In this exercise we
practise all these steps in the case of an “exotic” quadratic minimization problem.

We consider the quadratic functional
J(u) = / | div u(x)}2 + lux)|* + f(x) - u(x) dx , (5.3.1)
Q

with  C R3 bounded, and for functions u : € — R3, that is, J takes vector field arguments.
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(5.3a) Identify the bilinear form a and the linear form ¢ in the quadratic functional J, cf.
[NPDE, Def. 2.2.24].

HINT: See [NPDE, Def. 2.2.24].
Solution: We get
a(u,v) = 2/ div u(x) divv(x) dx + 2/ u(x) - v(x) dx,
Q Q

and

(5.3b) Show that the bilinear form a from subproblem (5.3a) is symmetric and positive definite,
see [NPDE, Def. 2.2.35].

HINT: See [NPDE, Eq. (2.2.26)] and [NPDE, Def. 2.2.35].

Solution: a is clearly symmetric. To show that it is positive definite, assume

0=a(u,u) :2/9}divu(x)‘zdx—l—Q/QHu(X)||2dx.

Since both integrands are nonnegative, we must have u(x) = 0 almost everywhere in €2, i.e.,
u = 0. This shows that a(u, u) > 0 whenever u # 0.

(5.3c)  Show that the linear form ¢ from subproblem (5.3a) is continuous with respect to the
energy norm induced by a.

HINT: The energy norm is defined as in [NPDE, Def. 2.2.38], and ¢ must satisfy [NPDE,
Eq. (2.2.48)] to be continuous with respect to this norm.

Solution: Once more, the Cauchy-Schwartz inequality comes to our rescue.

(V)] = ‘—/Qf(x) v(x) dx

: ( Q”“X)“%X)%( /Q ||V(X)H2dx)%
< (/g”f(x)nzdx)%</Q||V(X)||2dx+/Q||divv(g;)||2dx>%
-(/ ||f<x>u2dx)é R

(8.3d) Explain why the Sobolev space

H(div,Q) := {V : Q — R?integrable

/ | div v|* + [|v]* dx < oo}.
Q

provides the right framework for studying the minimization problem for the functional J from
(5.3.1).
Solution: This is exactly the space

{v:Q — R’integrable | ||v||, < co}.
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(5.3e)  Derive and state the linear variational problem equivalent to the minimization problem

u, = argmin J(v).
veH (div,Q)

HINT: See [NPDE, Eq. (2.4.8)] and [NPDE, Eq. (2.4.9)].
Solution: Find u € H(div, ) such that

a(u,v) = Q/Qdivu(x) div v(x) dx+2/ﬂu(x)~v(x) dx = —/Qf(x)-v(x) dx =£(v) (5.3.2)
for all v € H(div, ).

(5.3f)  Derive the partial differential equation on §2 that arises from the variational problem
from (5.3e).

HINT: Follow the approach of [NPDE, Section 2.5], in particular [NPDE, Ex. 2.5.18]: as test
functions v use vector fields in (C}(€2))3, that is, they should be zero on the boundary. Use
[NPDE, Thm. 2.5.9] (with div u in place of v and v in place of j) in order to “shift the div from
v onto divu as — grad”. Argue, what happens to the boundary terms. Then appeal to [NPDE,
Lemma 2.5.12].

Solution: After using [NPDE, Thm. 2.5.9] on (5.3.2), we get
2/ v(x) - n(x) divu(x)dx + / v(x) - [2u(x) — 2 grad(divu(x)) + f(x)] dx = 0. (5.3.3)
o0 Q

By choosing v = 0 on 0f2, the boundary term will disappear, and since v is otherwise arbitrary,
we obtain
2u(x) — 2 grad(divu(x)) = —f(x)

in €.
(5.3g) The variational problem from (5.3e) also implies boundary conditions. Which?

HINT: Follow the strategy from [NPDE, Ex. 2.5.18] and use the PDE derived in subproblem (5.3f).

Solution: According to what we found in the last problem, (5.3.3) reduces to

/ 2v(x) - n(x) divu(x) dx = 0,
o9
from which we obtain the boundary condition
divu(x) =0
on 0S.

Problem 5.4 Poisson equation in polar coordinates

In the problem we will come across an important case of transformation of the domain of a
boundary value problem prior to its discretization. We interpret the domain transformation as a
change of coordinates, studying the concrete case of polar coordinates to switch from the unit
disk domain to a simple square domain.
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Remark. A rationale for using polar coordinates when dealing with boundary value problems on
a disk is that, of course, mesh generation is trivial for a square and boundary approximation is not
a concern. This will become in [NPDE, Chapter 3].

As a model problem we consider homogeneous Dirichlet problem for the Poisson equation [NPDE,
Eq. (2.5.15)]

—Au=f inQ, u=0 ondf), (5.4.1)
on the unit disk
Q={xcR*: |z|<1}. (5.4.2)

Here A is the Laplace operator, see [NPDE, Rem. 2.5.14]. The variational (weak) formulation of
(5.4.1) has been discussed in [NPDE, Ex. 2.9.2].

The transformation from polar coordinates (r,¢), 0 < r < 1,0 < ¢ < 2, to Cartesian coordi-
nates (z1, ;) € R? is given by the mapping

(ﬁ;) = B(r,¢) = T(ZTSZ’) (5.4.3)

(¢f. INPDE, Eq. (2.4.21)]), and we have 2 = ®(€2,,), with the tensor product domain
Q, :=10,1] x [0, 27]. (5.4.4)

Before you start solving this problem, we suggest you to refresh your knowledge about the polar
coordinate example in [NPDE, § 2.4.20].

= T
(5.4a) Fora functionu € C*(€2). Compute the Cartesian components of grad u = ( Ou  Ou ) ,

Oz’ Ox2

0
for u = u(r, ¢) given in polar coordinates, in terms of the partial derivatives a_u and a—;
r
HINT: Use the chain rule for differentiation.
Solution: We have:
ou ou 0xy ou Oxy ou . Ou
or omor T omor % T,
ou ou 0x, N ou Oxy sin ¢ ou L rcosd ou
— = = —rsing— +r —_—
8¢ 81’1 8¢ 81’2 8¢ 0:)31 81’2
In matrix-vector notation, we can write:
ou ou
or| | coso sin ¢ Oz,
& N [—r sing —+rcos gb} Ou |’ (5:4-5)
a¢ ::E;QT . 81’2
and thus
ou ou
Or, | _ lircos¢ —sing||gr
Ou | — [r sing +cosg| |9 |” (5.4.6)
81’2 ::D‘;fT a¢
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(5.4b)  Explain the origin of the r-factor in the integration formula in polar coordinates:

| uw)da - / / o) ds dr. (5.47)

HINT: You may appeal to the transformation formula for multi-dimensional integrals that you
learned in your Analysis course.

Solution: According to the transformation formula for multi-dimensional integrals, it holds that
dz = det D@ d¢pdr. From (5.4.6), it follows that det D@ = rcos® ¢ + rsin?¢ = r, which
explains the factor in (5.4.7).

Alternative: geometric argument, area of angular sectors grows linearly with 7.

(5.4¢c) As we learned in [NPDE, Section 2.9], the bilinear form associated with the homoge-
neous Dirichlet problem for the linear scalar 2nd-order differential operator —A on (2 reads:

a(u,v) = / gradu(zx) - gradv(z)dx , u,v € Hy(S) . (5.4.8)
Q

Rewrite it in terms of polar coordinates, that is, for u = u(r, ¢) and v = v(r, ¢), in terms of partial
derivatives with respect to 7 and ¢, and by means of an integral over the domain (2, as given in
(5.4.4).

o o\
Solution: Let d=|——) .
olution: Let grad, <8r’8¢)
With the help of (5.4.6) and (5.4.7), we have:

2
/Q gradu - gradvdx = / (D o7 grad,u) - (D o7 grad,v)det D@ dpdr =

27 COS¢ 8 sin ¢ Ov COS¢——8—SIH¢
// ¢ . gr 8¢ rdedr =
u v,
_sm¢+ra¢cos¢ Esmgb%—;a—gbcosqb
Judv 1 Oudv
(G e s -
2 auﬁv 10u dv
// "or or r8¢8¢ dgdr (5:4.9)

(5.4d) Let ©Q, be as in (5.4.4). Assuming that u, € C(Q,), what further condition does u,
have to satisfy in order to ensure that |u|y1(q) < 00, Where u(x1, x2) = up(r (21, 22), (21, T2))
2 — R (and (r, ¢) are the polar Coordlnates on 2 as given in (5.4.3))?

HINT: Use the results from subproblem (5.4c).

Solution: Using (5.4.9):
|| —/ rad u(x) - grad (:I:)dar:—/ 8up( ) 2—|— 8up( ) 2dgbd
UlgiQ) = Qg u g u = or 0 T, r.

In the second addend of the last integral, we have the factor 1 —, which is not integrable at r = 0.
In order to have a finite integral, we need to integrate a quantity that behaves as T%, with o < 1.
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P 2
This means that we need < 5:;:( gb)) = O(r?) for r — 0, with 3 > 0. In other words, we

need that 08—¢( ,¢) =0.

Write u € H}(Q) for the weak solution on (5.4.1), and u,, : 2, — R for its transformation into
polar coordinates: u,(r, ¢) := u(z1(r, ¢), x2(r, @)).

(5.4e)  What linear variational problem on 2, is solved by u,? Assume that also f is given in
polar coordinates: f = f(r, ¢).
HINT: The results from task (5.4c) may come handy.

Solution: The variational formulation on €2, reads:

Find u, € Vi, := {vp € HY(Q,) : %—:];’(0, ¢) =0and v,(1,¢) = 0forall ¢ € [O,27r)} such that
8up vy, 10y, vy, B
PG OG0+ LT OG0 dodr = | [ 6)(r ) dodr (5410
ap(“‘;ﬂ’p) Z(:’rp)

for all v, € V.

Now we assume that the source function enjoys rotational symmetry, i.e. f = f(r), with no
dependence on ¢. Then the solution to (5.4.1) will also be rotationally symmetric: u, = wu,(r),
0<r<1.

(5.4f) What variational problem (in polar coordinates) has to be satisfied by the rotationally
symmetric solution u, = u,(r) of (5.4.1) in the case of f = f(r)?

Solution: Since for the test functions too it would not make sense not to choose them to be
rotationally symmetric, the variational formulation reads:

Find u, € W := {v € C,([0,1]) : v(1) = 0} such that:

' d
/ d“"( dr—/f ryrdr  forallv € W. (5.4.11)
.

2

(5.4g) The energy space for the variational problem from task (5.4f) is:
v
—(r)

V= {’U e L*(]0,1]) :/0 r Zlir

dr < oo, v(1) = O}. (5.4.12)

Is the linear functional J : V' — R given by the point evaluation .J(v) = v(0) continuous on V'?

HINT: Follow the approach of [NPDE, § 2.4.20] and try to find a function v € V with “v(0) =
oo”. It is worth studying [NPDE, § 2.4.20] carefully, because after transformation back to the
disk ©, V' can be regarded as the space of rotationally symmetric functions in H2(€2).

Solution: No, it is not. As seen in [NPDE, § 2.4.20], let us consider v = log |log Z|, r # 0.
Then we have that v € V' (see [NPDE, § 2.4.20]) but J(v) = v(0) = oo.
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(5.4h)  Assuming that u, € C*([0,1]), state the 2-point boundary value problem associated to
the variational formulation from task (5.4f).

HINT: The boundary conditions will look strange, but, in light of the discussion in [NPDE,
Rem. 2.3.6], the result of subproblem (5.4g) should make clear, why imposing boundary values
at 0 does not make sense.

Solution: Integration by parts of (5.4.11) gives:

-/ i (r5e )ty ar+ [r%mvmr -/ )

r 0

For density argument, we can take v such that v(0) = v(1) = 0. Then the 2-point boundary value
problem reads:

i (gt} =) o,
u(1) = 0.

Published on March 18.
To be submitted on March 25.
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