
R. Hiptmair

L. Scarabosio

C. Urzua Torres

Spring Term 2015

Numerical Methods for Partial
Differential Equations

ETH Zürich

D-MATH

Homework Problem Sheet 6

Problem 6.1 Linear Finite Element implementation for 2D reaction-diffusion

In [NPDE, Section 3.3] we have studied the algorithmic aspects related to the linear finite element

Galerkin discretization of two-dimensional, second-order linear variational problems posed on the

Sobolev space H1(Ω). In [NPDE, Section 3.4], you have seen the extension to more general finite

element subspaces of H1(Ω). The present exercise is meant to make you more familiar with the

techniques learned in class.

To this end, we consider the following Neumann problem on the unit square Ω = [0, 1]2 with

homogeneous Neumann data and reaction term (cf. [NPDE, Eq. (3.1.4)]):

u ∈ H1(Ω) :

∫

Ω

grad u · grad v + u v dx

︸ ︷︷ ︸

:=a(u,v)

=

∫

Ω

fv dx

︸ ︷︷ ︸

:=ℓ(v)

∀v ∈ H1(Ω). (6.1.1)

We want to develop an efficient MATLAB code for the discretization of (6.1.1) on a triangular

mesh using linear finite elements.

The mesh data structure contains the following fields, see also [NPDE, § 3.3.3]:

• Mesh.Coordinates: N × 2 matrix, i-th row containing the coordinates of the i-th
vertex, i ∈ {1, . . . , N};

• Mesh.Elements: M × 3-matrix, j-th row

Recall that for piecewise linear finite elements on triangular meshes the so-called local shape

functions (→ [NPDE, Def. 3.4.19]) agree with the barycentric coordinate functions λ1, λ2, and

λ3 of the triangles, see [NPDE, Fig. 84].

(6.1a) Implement the function

grad = gradbarycoords(Vertices)

which returns the values of the gradients of local shape functions (i.e. the barycentric coordi-

nate functions) λi(x), i = 1, 2, 3, in the vertices with coordinates contained in the 3 × 2-matrix

Vertices. The output grad is a 2 × 3 matrix containing the gradients of the shape functions

evaluated at the vertices (the first column contains the gradient of λ1, the second one the gradient

of λ2 and the last one the gradient of λ3).

Problem Sheet 6 Page 1 Problem 6.1

(6.1b) Implement the routine

function Aloc = Elmat Lapl LFE(Vertices)

to compute the element matrix associated to the bilinear form

a1(u, v) =

∫

Ω

grad u · grad v dx, u, v ∈ H1(Ω),

and linear Lagrangian finite elements.

Here, Vertices is a 3×2-vector providing the coordinates of the element vertices. The function

should return a 3× 3 matrix Aloc containing the element matrix.

(6.1c) Implement the routine

function Aloc = Elmat Mass LFE(Vertices)

to compute the element matrix associated to the bilinear form

a2(u, v) =

∫

Ω

u v dx, u, v ∈ L2(Ω) ,

and linear Lagrangian finite elements on triangular elements. The input and output arguments are

the same as for Elmat Lapl LFE.

HINT: Compute the entries of the element matrix by analytic evaluation of the two-dimensional

integrals. In order to avoid cumbersome computations, you may rely on the general formula from

[NPDE, Lemma 3.6.61].

(6.1d) Implement the routine

function Aloc = Elmat LaplMass LFE(Vertices)

to compute the element matrix associated to the bilinear form in (6.1.1) and linear Lagrangian

finite elements.

The input and output arguments are the same as for Elmat Lapl LFE.

HINT: Combine the results from tasks (6.1b) and (6.1c).

(6.1e) Implement the routine

philoc = localLoadLFE(Vertices,FHandle)

to compute the element vector philoc associated to the linear form in (6.1.1), for linear La-

grangian finite elements, see [NPDE, Section 3.3.6].

The input argument Vertices is a 3×2-matrix containing the element vertices, and FHandle

is a function handle to the function f . You can assume that FHandle accepts as input K × 2-

matrices, for which each row i = 1, . . . , K, K ∈ N, contains the coordinates of a point, and then

it returns the values of f in those points as a column vector of length K.

Problem Sheet 6 Page 2 Problem 6.1

Since f is given in procedural form, the entries of the element vectors can be computed only

approximately by means of numerical quadrature, cf. [NPDE, § 3.3.44]. Use composite edge

midpoint quadrature rule that, for a triangle K with vertices a
1, a2, a3, and edge midpoints

m
1 := 1

2
(a2 + a

3), m2 := 1
2
(a1 + a

3), m3 := 1
2
(a2 + a

1), reads

∫

K

ϕ(x) dx ≈ |K|
3

(
ϕ(m1) + (ϕ(m2) + (ϕ(m3)

)
. (6.1.2)

HINT: See [NPDE, Code 3.3.47] for a code performing the same task using the 2D trapezoidal

quadrature rule [NPDE, Eq. (3.3.45)].

(6.1f) Implement an efficient MATLAB function

A = assemMat LFE(Mesh,getElementMatrix)

that assembles the Galerkin matrix A associated to the bilinear form in (6.1.1), for linear La-

grangian finite elements. This routine receives in input the mesh data structure Mesh (as de-

scribed at the beginning of the problem) and a function handle getElementMatrix to a func-

tion that expects a 3× 2-array of vertex coordinates and returns a 3× 3 element matrix.

HINT: Use the MATLAB’s sparse matrix data format to store A. Remember the discussion in class

about the efficient way of filling a sparse matrix.

(6.1g) Implement the function

phi = assemLoad LFE(Mesh,getElementVector,FHandle)

to assemble the right-hand side vector phi given the mesh structure Mesh, a handle to a function

getElementVector expecting a 3 × 2 array of vertex coordinates as input and returning an

element load vector as a column vector of size 3, and a handle FHandle to the function f .

HINT: The procedure is similar to the one for assemMat LFE.

(6.1h) Implement the function

err = L2Err LFE(Mesh,U,UHandle)

to compute the error ‖u− uh‖L2(Ω), where u is the exact solution to (6.1.1), passed in the function

handle UHandle, and uh is the discrete solution, passed through the coefficient vector U with

respect to the nodal basis of S0
1 (M). The argument Mesh contains the mesh data structure.

To compute the integrals, use the 2D trapezoidal quadrature rule, see [NPDE, Eq. (3.3.45)].

(6.1i) Implement the function

err = H1SErr LFE(Mesh,U,gradUHandle)

to compute the error |u− uh|H1(Ω), where u is the exact solution to (6.1.1), for which the gradient

is passed in the function handle gradUHandle (that returns a column vector), and uh is the

Problem Sheet 6 Page 3 Problem 6.1

discrete solution, passed through the coefficient vector U. Assume that, given a K × 2-matrix

of point coordinates, K ∈ N, the function gradUHandle returns the value of grad u in these

points in a 2×K-matrix. The input argument Mesh contains the mesh data structure.

To compute the integrals, again rely on the 2D trapezoidal quadrature rule, see [NPDE, Eq. (3.3.45)].

(6.1j) Implement a function

[U,L2err,H1serr] = mainNeumann(Mesh)

that, given in input a mesh data structure Mesh, computes the discrete solution uh to (6.1.1) in the

case that the exact solution is u(x) = cos(2πx1) cos(2πx2), plots the mesh and uh. The function

returns the coefficient vector U of uh, the L2-norm and the H1-seminorm of the discretization

error.

Create a plot of the discrete solution using the mesh Square.mat provided in the handout to be

downloaded from the course webpage.

HINT: Given the exact solution, you can use (6.1.1) to obtain the right-hand side f .

HINT: To plot the mesh you can use the MATLAB function triplot, and to plot the solution

you can use the function trisurf.

HINT: To load the mesh use the MATLAB function load.

HINT: Using the mesh given in the handout, the L2-norm error should be around 0.0020 and the

H1-seminorm error around 0.6627.

Listing 6.1: Testcalls for Problem 6.1

1 Vertices = [0 0; 1 0; 0 1];

2 FHandle = @(x) x(:,1).*x(:,2);

3

4 Mesh = load([’Square.mat’]);

5

6 f p r i n t f(’\n##gradbarycoords’)

7 gradbarycoords_ref(Vertices)

8

9 f p r i n t f(’\n##Elmat_Lapl_LFE’)

10 Elmat_Lapl_LFE_ref(Vertices)

11

12 f p r i n t f(’\n##Elmat_Mass_LFE’)

13 Elmat_Mass_LFE_ref(Vertices)

14

15 f p r i n t f(’\n##Elmat_LaplMass_LFE’)

16 Elmat_LaplMass_LFE_ref(Vertices)

17

18 f p r i n t f(’\n##localLoadLFE’)

19 localLoadLFE_ref(Vertices,FHandle)

20

21 f p r i n t f(’\n##assemMat_LFE’)

22 A = assemMat_LFE_ref(Mesh,@Elmat_LaplMass_LFE);

23 A(1:10,1:10)

Problem Sheet 6 Page 4 Problem 6.1

24

25 f p r i n t f(’\n##assemLoad_LFE’)

26 L = assemLoad_LFE_ref(Mesh,@localLoadLFE,FHandle);

27 L(1:10)

Listing 6.2: Output for Testcalls for Problem 6.1

1 testcall

2

3 ##gradbarycoords

4 ans =

5

6 -1 1 0

7 -1 0 1

8

9 ##Elmat_Lapl_LFE

10 ans =

11

12 1.0000 -0.5000 -0.5000

13 -0.5000 0.5000 0

14 -0.5000 0 0.5000

15

16 ##Elmat_Mass_LFE

17 ans =

18

19 0.0833 0.0417 0.0417

20 0.0417 0.0833 0.0417

21 0.0417 0.0417 0.0833

22

23 ##Elmat_LaplMass_LFE

24 ans =

25

26 1.0833 -0.4583 -0.4583

27 -0.4583 0.5833 0.0417

28 -0.4583 0.0417 0.5833

29

30 ##localLoadLFE

31 ans =

32

33 0

34 0.0208

35 0.0208

36

37 ##assemMat_LFE

38 ans =

39

40 (1,1) 1.0001

41 (2,2) 1.0002

42 (3,3) 1.0001

43 (4,4) 1.0002

Problem Sheet 6 Page 5 Problem 6.1

44 (5,5) 2.0002

45 (6,6) 2.0002

46 (7,7) 4.0005

47 (8,8) 2.0002

48 (9,9) 2.0002

49 (10,10) 2.0002

50

51 ##assemLoad_LFE

52 ans =

53

54 1.0e-03 *
55

56 0

57 0.0038

58 0.1602

59 0.0038

60 0.0025

61 0.0025

62 0.2441

63 0.2441

64 0.2441

65 0.0012

Problem 6.2 Rigidity of Piecewise Polynomial Continuous Functions

[NPDE, Section 3.3] and, particular, [NPDE, Section 3.5] probably created the impression that

the construction of a viable finite element space is straightforward: one starts from a mesh, fixes

a piecewise polynomial space and, finally, finds suitable locally supported basis functions. How-

ever, at each stage this procedure can fail, which is strikingly demonstrated in this problem.

Let M = {K} be a tensor product mesh, see [NPDE, Section 3.4.1], as depicted in Figure 6.1

with Nx, Ny grid lines in x- and y-direction, respectively. All cells (elements) are rectangles, and

there are N = NxNy vertices in the mesh.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.1: A tensor product mesh.

Problem Sheet 6 Page 6 Problem 6.2

(6.2a) Define the function space

WN =
{
v ∈ H1

0 (Ω)
∣
∣ v|K ∈ P1(R

2), ∀K ∈ M
}
,

of piecewise linear functions (see [NPDE, Def. 3.4.8]) on each element of M, that are zero at the

boundary. What is the dimension of WN?

HINT: Remember from [NPDE, § 3.3.8] that an (affine) linear function R
2 7→ R is already fixed

by prescribing values in three non-collinear points.

(6.2b) Define the function space

VN =
{
v ∈ H1(Ω)

∣
∣ v|K ∈ P1(R

2) ∀K ∈ M
}
,

of piecewise linear functions on each element of M. What is the dimension of VN?

(6.2c) Define the function space

VN =
{
v ∈ H1(Ω)

∣
∣ v|K ∈ Q1(R

2) ∀K ∈ M
}
,

of piecewise bi-linear functions on each element of M, see [NPDE, Def. 3.4.13]. What is the

dimension of this VN?

(6.2d) If we abandon nice “confoming” finite element meshes and even admit “hanging nodes”,

additional difficulties loom. To appreciate this, now consider the non-conforming triangular mesh

M of Ω =]0, 1[2 in Figure 6.2. There, the hanging nodes are located on the midpoints of the

edges of the other triangle.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.2: Non-conforming triangular mesh

Determine the dimension of the space

WN =
{
v ∈ C0(Ω)

∣
∣ v|K ∈ P1(R

2) ∀K ∈ M, v|∂Ω = 0
}
,

and describe a basis of locally supported functions.

Problem Sheet 6 Page 7 Problem 6.2

(6.2e) What is the dimension of the space obtained from WN by dropping the boundary condi-

tion v|∂Ω = 0. Also in this case describe a basis and specify the supports of the basis functions.

Problem 6.3 Convection Bi-linear Form

Hitherto, in class we have exclusively studied (linear) variational problems with symmetric bilin-

ear forms, which are connected with quadratic minimization problems, as explained in [NPDE,

Section 2.2.3]. Yet, many PDE models have variational formulations that involve non-symmetric

bilinear forms. A simple representative will be examined in this problem. We will practise

multi-dimensional integration by parts from [NPDE, Section 2.5.1] and also some local compu-

tations connected with Galerkin discretization by means of linear finite elements, see [NPDE,

Section 3.3.5].

Let Ω ⊂ R
2 be a bounded polygonal domain. We define the convection bilinear form as

a(u, v) =

∫

Ω

(b(x) · grad u(x))v(x) dx, u ∈ H1(Ω), v ∈ L2(Ω),

where b : Ω → R
2 is a vector field, with each component in H1(Ω).

(6.3a) Show that for u, v ∈ H1
0 (Ω)

a(u, v) = −
∫

Ω

u(x) div(b(x)v(x)) dx.

HINT: Use Green’s formula [NPDE, Thm. 2.5.9]

(6.3b) Show that, if divb(x) = 0, then

a(u, u) = 0, ∀u ∈ H1
0 (Ω).

HINT: Use the general product rule [NPDE, Lemma 2.5.4].

(6.3c) Show that, if divb(x) = 0 and b(x) · n = 0 on ∂Ω, then

a(u, u) = 0, ∀u ∈ H1(Ω).

(6.3d) Show that

a(u, u) > 0, ∀u ∈ H1
0 (Ω),

if − divb(x) is uniformly positive (see [NPDE, Def. 2.2.15]).

From now on assume that the vector field is constant on Ω: b(x) := b, ∀x ∈ Ω.

We perform a Finite Element Galerkin discretization of the linear variational problem: Seek

u ∈ H1
0 (Ω) such that

a(u, v) = ℓ(v), ∀v ∈ L2(Ω),

on a triangular mesh M and based on the discrete trial and test space S0
1,0(M) (linear finite

elements as [NPDE, Section 3.3]). The nodal basis of “tent functions” as introduced in [NPDE,

Section 3.3.3] is used throughout.

Problem Sheet 6 Page 8 Problem 6.3

(6.3e) Write a C++ function

template <class Coord_t, class Vector2d, class Matrix>

void locMatConvect(Coord_t const & a1, Coord_t const & a2,

Coord_t const & a3, Vector2D const & b,

Matrix & elmat)

that computes the element matrix for a(·, ·) on a triangle K with vertices a1,a2,a3, whose coor-

dinates are passed in as a1, a2, a3. The argument b supplies the vector b.

Objects of type Coord t and Vector2D represent vectors with 2 components and must allow

component access via [0] and [1].

Matrix objects provide the following methods and types

• value t

• index t

• rows()

• cols()

• value t operator(index t, index t) const to access the matrix values.

• value t & operator(index t, index t) to assign the matrix values.

the elmat instance passed as argument can be assumed to have the right size.

A C++ template file is available in the lecture’s webpage as guidance for implementation.

Remark: Note that essential conditions don’t matter at the level of element matrices.

HINT: Revising [NPDE, Section 3.3.5] might be useful, particularly to compute the gradients.

Listing 6.3: Testcall for subproblem (6.3e) (fragment from main file).

1 // test call:

2 // initialize vertices and b vector

3 coo rd t a1 (0 ,1) , a2 (2 ,1) , a3 (1 ,3) ;

4 v e c t o r t b (2) ; b . setOnes () ;

5 // initialize local matrix and call locMatConvect

6 m a t r i x t l o c a l (3 ,3) ;

7 locMatConvect (a1 , a2 , a3 , b , l o c a l) ;

8 // print the obtained matrix

9 std : : cout << ” l o c a l mat r ix f o r element w i th v e r t i c e s : (”

10 << a1 . transpose () << ”) , (” << a2 . transpose () << ”) , (”

11 << a3 . transpose () << ”) : \n \n ” << l o c a l << std : : endl ;

Listing 6.4: Output for Testcalls for subproblem (6.3e)

1 l o c a l mat r ix f o r element w i th v e r t i c e s : (0 1) , (2 1) , (1 3) :

2

3 −0.5 0.166667 0.333333

4 −0.5 0.166667 0.333333

5 −0.5 0.166667 0.333333

Problem Sheet 6 Page 9 Problem 6.3

(6.3f) Show that the Galerkin matrix is skew-symmetric.

HINT: A square matrix A is skew-symmetric, if AT = −A. Also recall the computations of

subproblem (6.3a).

Problem 6.4 Hybrid-Mesh Galerkin Matrices and Right-Hand Side Vec-

tors

In [NPDE, Rem. 3.5.16] we saw that both linear and bilinear Lagrangian finite elements can

be easily blended on a 2D hybrid mesh comprising both quadrilaterals and triangles. In this

exercise we study the details of such a finite element method with focus on local computations

and assembly.

Figure 6.3 displays a hybrid mesh M consisting of 13 vertices, 8 triangular elements and 4 quadri-

lateral elements. The coordinates of some of the vertices are

a
7 = (0, 0), a

1 = (0, 1), a
4 = (1, 1)/

√
2, a

3 = (0, 1)/
√
2.

The coordinates of the rest follow from symmetry.

In this problem we will compute the Galerkin matrix for (bi-)linear Lagrangian finite elements

[NPDE, Section 3.5] on such a mesh for the bilinear form asscociated with −∆

a(u, v) =

∫

Ω

gradu(x) · grad v(x) dx, u, v ∈ H1(Ω), (6.4.1)

and the right-hand side vector arising from the linear form

ℓ(v) =

∫

Ω

f(x)v(x) dx, (6.4.2)

with f ∈ C0(Ω).

(6.4a) What is the dimension of the finite element space S0
1 (M)?

HINT: See [NPDE, Rem. 3.5.16].

(6.4b) Compute the 4 × 4 element Galerkin matrix for one of the squares using the standard

bilinear local shape functions from [NPDE, Eq. (3.5.10)]

HINT: All the square elements are equal, and they have side lengths 1/
√
2. Number the nodes

either clockwise or counterclockwise around the square (due to symmetry, any such numbering

should yield the same matrix). There are two ways to compute their corresponding element

matrices and you may choose either of them:

1. direct evaluation of the localized bilinear form aK for pairs of local shape functions. Note

that their gradients are not constant this time.

2. computation of the Galerkin matrix on the unit square, and subsequent transformation. See

[NPDE, Eq. (3.5.10)] for the basis functions on the unit square. [NPDE, Section 3.7.3]

explains transformation techniques. Your transformation Φ in this case will simply be a

scaling.

Problem Sheet 6 Page 10 Problem 6.4

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

1

2 3 4

5 6 7 8 9

10
11

12

13

Figure 6.3: A hybrid mesh of triangles and quadrilaterals.

(6.4c) Compute the 3 × 3 element Galerkin matrix for the triangle with vertices 1, 2, 3 using

the standard linear local shape functions (barycentric coordinate functions, see)

HINT: The triangle has side lengths 1/
√
2, 1−1/

√
2 and

√

2−
√
2. Check out [NPDE, Eq. (3.3.21)].

Use the local node numbering inherited from the global one (i.e. vertex 1 is number 1, and so on).

(6.4d) Compute the element right-hand side vector for a quadrilateral cell. For this, use the

quadrature formula
∫

K

f(x) dx ≈ |K|
4

4∑

i=1

f(ai), (6.4.3)

where ai are the vertices of the square K.

(6.4e) What is the full 13×13 Galerkin matrix for the numbering of nodes given in Figure 6.3?

HINT: Do an assembly “by hand” (see [NPDE, Section 3.6.3]). For each pair of neighboring

vertices i, j, walk through the elements shared by i and j, find the local element contribution

from subproblems (6.4b) or (6.4c) and sum them up.

(6.4f) Compute the full right-hand side vector using the local contributions found in subproblem (6.4d).

For the local contributions from the triangles, you can use the corresponding quadrature rule there,

∫

K

f(x) dx ≈ |K|
3

3∑

i=1

f(ai),

with ai the vertices of the triangle.

Problem Sheet 6 Page 11 Problem 6.4

(6.4g) [NPDE, Rem. 3.5.18] discusses the choice of interpolation nodes and, thus, implicitly,

the choice of global shape functions, for quadratic Lagrangian finite elements on hybrid meshes.

What is the dimension of S0
2 (M), if M is the hybrid mesh display in Figure 6.3?

(6.4h) Write AQ for the Galerkin matrix AQ for a general linear second-order elliptic Neumann

boundary value problem when the space S0
2 (M) of quadratic Lagrangian finite elements on the

hybrid mesh from Figure 6.3 is used as a trial and test space. Give a sharp bound on the number

nnz(AQ) of non-zero entries of AQ.

HINT: In light of the supports of global shape functions, which pairs of them can interact in the

bilinear form?

Published on March 25.

To be submitted on April 1.

References

[NPDE] Lecture Slides for the course “Numerical Methods for Partial Differential Equa-

tions”.SVN revision # 74741.

[1] M. Struwe. Analysis für Informatiker. Lecture notes, ETH Zürich, 2009. https://moodle-

app1.net.ethz.ch/lms/mod/resource/index.php?id=145.

[NCSE] Lecture Slides for the course “Numerical Methods for CSE”.

Last modified on April 1, 2015

Problem Sheet 6 Page 12 References

http://www.sam.math.ethz.ch/~hiptmair/tmp/NPDE/NPDE15.pdf
http://www.sam.math.ethz.ch/~hiptmair/tmp/NumCSE11_ext.pdf

	Problem Sheet 6
	6.1 Linear Finite Element implementation for 2D reaction-diffusion
	6.2 Rigidity of Piecewise Polynomial Continuous Functions
	6.3 Convection Bi-linear Form
	6.4 Hybrid-Mesh Galerkin Matrices and Right-Hand Side Vectors

