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Problem 6.1 Linear Finite Element implementation for 2D reaction-diffusion

In [NPDE, Section 3.3] we have studied the algorithmic aspects related to the linear finite element

Galerkin discretization of two-dimensional, second-order linear variational problems posed on the

Sobolev space H1(Ω). In [NPDE, Section 3.4], you have seen the extension to more general finite

element subspaces of H1(Ω). The present exercise is meant to make you more familiar with the

techniques learned in class.

To this end, we consider the following Neumann problem on the unit square Ω = [0, 1]2 with

homogeneous Neumann data and reaction term (cf. [NPDE, Eq. (3.1.4)]):

u ∈ H1(Ω) :

∫

Ω

gradu · grad v + u v dx

︸ ︷︷ ︸
:=a(u,v)

=

∫

Ω

fv dx

︸ ︷︷ ︸
:=ℓ(v)

∀v ∈ H1(Ω). (6.1.1)

We want to develop an efficient MATLAB code for the discretization of (6.1.1) on a triangular

mesh using linear finite elements.

The mesh data structure contains the following fields, see also [NPDE, § 3.3.3]:

• Mesh.Coordinates: N × 2 matrix, i-th row containing the coordinates of the i-th
vertex, i ∈ {1, . . . , N};

• Mesh.Elements: M × 3-matrix, j-th row

Recall that for piecewise linear finite elements on triangular meshes the so-called local shape

functions (→ [NPDE, Def. 3.4.19]) agree with the barycentric coordinate functions λ1, λ2, and

λ3 of the triangles, see [NPDE, Fig. 84].

(6.1a) Implement the function

grad = gradbarycoords(Vertices)

which returns the values of the gradients of local shape functions (i.e. the barycentric coordi-

nate functions) λi(x), i = 1, 2, 3, in the vertices with coordinates contained in the 3 × 2-matrix

Vertices. The output grad is a 2 × 3 matrix containing the gradients of the shape functions
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evaluated at the vertices (the first column contains the gradient of λ1, the second one the gradient

of λ2 and the last one the gradient of λ3).

Solution: See Listing 6.1 for the code, see also [NPDE, Code 3.3.24].

Listing 6.1: Implementation for gradbarycoords

1 f u n c t i o n G = gradbarycoords(Vertices)

2 % MATLAB function computing the gradients of barycentric

coordinate functions

3 % on a triangle whose vertex positions are passed in the rows

of a

4 % 3× 2-matrix. The components of the gradients are returned in

the

5 % columns of a 2× 3-matrix.
6

7 % Solve for the coefficients of the barycentric coordinate

functions, see \eqref{eq:lambdalse}

8 X = inv([ones(3,1),Vertices]);

9 G = X(2:3,:); % extract gradients

(6.1b) Implement the routine

function Aloc = Elmat Lapl LFE(Vertices)

to compute the element matrix associated to the bilinear form

a1(u, v) =

∫

Ω

grad u · grad v dx, u, v ∈ H1(Ω),

and linear Lagrangian finite elements.

Here, Vertices is a 3×2-vector providing the coordinates of the element vertices. The function

should return a 3× 3 matrix Aloc containing the element matrix.

Solution: See Listing 6.2 for the code, see also [NPDE, Code 3.3.25].

Listing 6.2: Implementation for Elmat Lapl LFE

1 f u n c t i o n Aloc = Elmat_Lapl_LFE(Vertices)

2 % Computation of element matrix for piecewise linear

Lagrangian finite

3 % elements and a triangular elements, whose vertex positions

are passed

4 % in the rows of the \texttt{Vertices} argument.

5

6 % Compute area of triangle

7 area = 0.5*det(Vertices(2:3,:) - kron([1;1],Vertices(1,:)));

8 % Compute gradients of barycentric coordinate functions,

9 % see \cref{mc:gradbarycoords}

10 G = gradbarycoords(Vertices);
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11 % Compute inner products of gradients through matrix

multiplication

12 Aloc = area*G’*G;

(6.1c) Implement the routine

function Aloc = Elmat Mass LFE(Vertices)

to compute the element matrix associated to the bilinear form

a2(u, v) =

∫

Ω

u v dx, u, v ∈ L2(Ω) ,

and linear Lagrangian finite elements on triangular elements. The input and output arguments are

the same as for Elmat Lapl LFE.

HINT: Compute the entries of the element matrix by analytic evaluation of the two-dimensional

integrals. In order to avoid cumbersome computations, you may rely on the general formula from

[NPDE, Lemma 3.6.61].

Solution: See Listing 6.3 for the code.

Listing 6.3: Implementation for Elmat Mass LFE

1 f u n c t i o n Mloc = Elmat_Mass_LFE(Vertices)

2

3 % Copyright 2005-2005 Patrick Meury

4 % SAM - Seminar for Applied Mathematics

5 % ETH-Zentrum

6 % CH-8092 Zurich, Switzerland

7

8 % Compute area of triangle

9 area = 0.5*det(Vertices(2:3,:) - kron([1;1],Vertices(1,:)));

10

11 % Compute local mass matrix

12

13 Mloc = area/12*[2 1 1; 1 2 1; 1 1 2];

14

15 re turn

(6.1d) Implement the routine

function Aloc = Elmat LaplMass LFE(Vertices)

to compute the element matrix associated to the bilinear form in (6.1.1) and linear Lagrangian

finite elements.

The input and output arguments are the same as for Elmat Lapl LFE.

HINT: Combine the results from tasks (6.1b) and (6.1c).

Solution: See Listing 6.4 for the code.
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Listing 6.4: Implementation for Elmat LaplMass LFE

1 f u n c t i o n Aloc = Elmat_LaplMass_LFE(Vertices)

2

3 Aloc = Elmat_Lapl_LFE(Vertices) + Elmat_Mass_LFE(Vertices);

(6.1e) Implement the routine

philoc = localLoadLFE(Vertices,FHandle)

to compute the element vector philoc associated to the linear form in (6.1.1), for linear La-

grangian finite elements, see [NPDE, Section 3.3.6].

The input argument Vertices is a 3× 2-matrix containing the element vertices, and FHandle

is a function handle to the function f . You can assume that FHandle accepts as input K × 2-

matrices, for which each row i = 1, . . . , K, K ∈ N, contains the coordinates of a point, and then

it returns the values of f in those points as a column vector of length K.

Since f is given in procedural form, the entries of the element vectors can be computed only

approximately by means of numerical quadrature, cf. [NPDE, § 3.3.44]. Use composite edge

midpoint quadrature rule that, for a triangle K with vertices a
1, a2, a3, and edge midpoints

m
1 := 1

2
(a2 + a

3), m2 := 1
2
(a1 + a

3), m3 := 1
2
(a2 + a

1), reads

∫

K

ϕ(x) dx ≈ |K|
3

(
ϕ(m1) + (ϕ(m2) + (ϕ(m3)

)
. (6.1.2)

HINT: See [NPDE, Code 3.3.47] for a code performing the same task using the 2D trapezoidal

quadrature rule [NPDE, Eq. (3.3.45)].

Solution: See Listing 6.5 for the code, see also [NPDE, Code 3.3.47].

Listing 6.5: Implementation for localLoadLFE

1 f u n c t i o n philoc = localLoadLFE(Vertices,FHandle)

2

3 % Compute area of triangle

4 area = 0.5*det(Vertices(2:3,:) - kron([1;1],Vertices(1,:)));

5 % Evaluate source function for vertex location

6 philoc = z e r o s(3,1);

7

8 philoc(1) = FHandle(sum(Vertices([1

2],:),1)/2)/2+FHandle(sum(Vertices([1 3],:),1)/2)/2;

9 philoc(2) = FHandle(sum(Vertices([1

2],:),1)/2)/2+FHandle(sum(Vertices([2 3],:),1)/2)/2;

10 philoc(3) = FHandle(sum(Vertices([1

3],:),1)/2)/2+FHandle(sum(Vertices([2 3],:),1)/2)/2;

11

12 % Scale with
1
3
·area of triangle

13 philoc = philoc*area/3.0;
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(6.1f) Implement an efficient MATLAB function

A = assemMat LFE(Mesh,getElementMatrix)

that assembles the Galerkin matrix A associated to the bilinear form in (6.1.1), for linear La-

grangian finite elements. This routine receives in input the mesh data structure Mesh (as de-

scribed at the beginning of the problem) and a function handle getElementMatrix to a func-

tion that expects a 3× 2-array of vertex coordinates and returns a 3× 3 element matrix.

HINT: Use the MATLAB’s sparse matrix data format to store A. Remember the discussion in class

about the efficient way of filling a sparse matrix.

Solution: See Listing 6.6 for the code, see also [NPDE, Code 3.3.33]

Listing 6.6: Implementation for assemMat LFE

1 f u n c t i o n A = assemMat_LFE(Mesh,getElementMatrix)

2 % Efficient assembly of global Galerkin matrix for piecewise

linear

3 % Lagrangian finite elements on a triangular mesh without

special

4 % treatment of boundaries and/or interfaces.

5

6 M = s i z e(Mesh.Elements,1); % Obtain number of elements/cells

7 % Preallocate index and value vectors for the initialization

8 % of the sparse Galerkin matrix

9 I = z e r o s(9*M,1); J = z e r o s(9*M,1); A = z e r o s(9*M,1);

10

11 % Loop over elements and add local contributions

12 loc = 1:9; % Moving index into the vectors \texttt{I},

\texttt{J}, and \texttt{A}

13 f o r i = 1:M

14 % Get local→global index mapping array for current element

15 dofh = Mesh.Elements(i,:);

16 % Extract vertices of current element

17 Vertices = Mesh.Coordinates(dofh,:);

18 % Compute element contributions

19 Aloc = getElementMatrix(Vertices);

20 % Insert contributions into temporary vectors.

21 I(loc) = dofh([1 2 3 1 2 3 1 2 3]);

22 J(loc) = dofh([1 1 1 2 2 2 3 3 3]);

23 A(loc) = Aloc(:);

24 % Advance indices into temporary vectors

25 loc = loc+9;

26 end

27

28 A = s p a r s e(I,J,A);

(6.1g) Implement the function
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phi = assemLoad LFE(Mesh,getElementVector,FHandle)

to assemble the right-hand side vector phi given the mesh structure Mesh, a handle to a function

getElementVector expecting a 3 × 2 array of vertex coordinates as input and returning an

element load vector as a column vector of size 3, and a handle FHandle to the function f .

HINT: The procedure is similar to the one for assemMat LFE.

Solution: See Listing 6.7 for the code.

Listing 6.7: Implementation for assemLoad LFE

1 f u n c t i o n phi = assemLoad_LFE(Mesh,getElementVector,FHandle)

2 % Element oriented assembly of right hand side vector for

Galerkin finite

3 % element discretization with piecewise linear Lagrangian

finite elements.

4

5 N = s i z e(Mesh.Coordinates,1); % get no. of vertices

6 M = s i z e(Mesh.Elements,1); % get no. of elements

7 phi = z e r o s(N,1); % Preallocate memory

8

9 % Main assembly loop over cells of the mesh

10 f o r i = 1:M

11 % Extract vertices of current element

12 dofh = Mesh.Elements(i,:);

13 Vertices = Mesh.Coordinates(dofh,:);

14 % Compute element right hand side vector

15 philoc = getElementVector(Vertices,FHandle);

16 % Add contributions to global load vector

17 phi(dofh) = phi(dofh) + philoc;

18 end

(6.1h) Implement the function

err = L2Err LFE(Mesh,U,UHandle)

to compute the error ‖u− uh‖L2(Ω), where u is the exact solution to (6.1.1), passed in the function

handle UHandle, and uh is the discrete solution, passed through the coefficient vector U with

respect to the nodal basis of S0
1 (M). The argument Mesh contains the mesh data structure.

To compute the integrals, use the 2D trapezoidal quadrature rule, see [NPDE, Eq. (3.3.45)].

Solution: See Listing 6.8 for the code.

Listing 6.8: Implementation for L2Err LFE

1 f u n c t i o n err = L2Err_LFE(Mesh,U,UHandle)

2 % L2ERR_LFE Discretization error in L2 norm for linear finite

elements

3 % using 2D trapezoidal quadrature rule.
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4

5 % Copyright 2005-2005 Patrick Meury

6 % SAM - Seminar for Applied Mathematics

7 % ETH-Zentrum

8 % CH-8092 Zurich, Switzerland

9

10 nElements = s i z e(Mesh.Elements,1);

11

12 % Compute discretization error

13

14 err = 0;

15 f o r i = 1:nElements

16

17 % Extract vertex numbers

18 dofh = Mesh.Elements(i,:);

19

20 % Extract vertex coordinates

21 Vertices = Mesh.Coordinates(dofh,:);

22

23 % Compute area of triangle

24 area = 0.5*det(Vertices(2:3,:) -

kron([1;1],Vertices(1,:)));

25

26 % Evaluate solutions

27

28 u_EX = UHandle(Vertices);

29 u_FE = U(dofh);

30

31 % Compute error on current element

32

33 err = err+sum((u_EX-u_FE).ˆ2,1)*area/3;

34

35 end

36 err = s q r t(err);

37

38 re turn

(6.1i) Implement the function

err = H1SErr LFE(Mesh,U,gradUHandle)

to compute the error |u− uh|H1(Ω), where u is the exact solution to (6.1.1), for which the gradient

is passed in the function handle gradUHandle (that returns a column vector), and uh is the

discrete solution, passed through the coefficient vector U. Assume that, given a K × 2-matrix

of point coordinates, K ∈ N, the function gradUHandle returns the value of gradu in these

points in a 2×K-matrix. The input argument Mesh contains the mesh data structure.
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To compute the integrals, again rely on the 2D trapezoidal quadrature rule, see [NPDE, Eq. (3.3.45)].

Solution: See Listing 6.9 for the code.

Listing 6.9: Implementation for H1SErr LFE

1 f u n c t i o n err = H1SErr_LFE(Mesh,U,GradUHandle)

2 % H1SERR_LFE Discretization error in H1 semi-norm for linear

finite

3 % elements using the 2D trapezoidal quadrature rule.

4

5 % Copyright 2005-2005 Patrick Meury & Kah Ling Sia

6 % SAM - Seminar for Applied Mathematics

7 % ETH-Zentrum

8 % CH-8092 Zurich, Switzerland

9

10 nElements = s i z e(Mesh.Elements,1);

11

12 % Compute discretization error

13

14 err = 0;

15 f o r i= 1:nElements

16

17 % Extract vertex numbers

18

19 dofh = Mesh.Elements(i,:);

20

21 % Extract vertex coordinates

22 Vertices = Mesh.Coordinates(dofh,:);

23

24 % Compute area of triangle

25 area = 0.5*det(Vertices(2:3,:) -

kron([1;1],Vertices(1,:)));

26

27 % Evaluate solutions

28

29 gradu_EX = GradUHandle(Vertices);

30 gradbarc = gradbarycoords(Vertices);

31 gradu_FE =

U(dofh(1))*gradbarc(:,1)+U(dofh(2))*gradbarc(:,2)+U(dofh(3))*gradbarc(:,3);

32 gradu_FE = repmat(gradu_FE,1,3); % the gradient is the

same in all the 3 vertices

33

34 % Compute error on the current element

35

36 err = err + sum(sum((gradu_EX-gradu_FE).ˆ2,1),2)*area/3;

37

38 end

39 err = s q r t(err);
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40

41 re turn

(6.1j) Implement a function

[U,L2err,H1serr] = mainNeumann(Mesh)

that, given in input a mesh data structure Mesh, computes the discrete solution uh to (6.1.1) in the

case that the exact solution is u(x) = cos(2πx1) cos(2πx2), plots the mesh and uh. The function

returns the coefficient vector U of uh, the L2-norm and the H1-seminorm of the discretization

error.

Create a plot of the discrete solution using the mesh Square.mat provided in the handout to be

downloaded from the course webpage.

HINT: Given the exact solution, you can use (6.1.1) to obtain the right-hand side f .

HINT: To plot the mesh you can use the MATLAB function triplot, and to plot the solution

you can use the function trisurf.

HINT: To load the mesh use the MATLAB function load.

HINT: Using the mesh given in the handout, the L2-norm error should be around 0.0020 and the

H1-seminorm error around 0.6627.

Solution: See Listing 6.10 for the code and Figure 6.1 for the plot.

Listing 6.10: Implementation for mainNeumann

1 f u n c t i o n [U,L2err,H1serr] = mainNeumann(Mesh)

2

3 FHandle = @(x)

(8*piˆ2+1)*cos(2*pi.*x(:,1)).*cos(2*pi.*x(:,2));

4 UHandle = @(x) cos(2*pi.*x(:,1)).*cos(2*pi.*x(:,2));

5 GradUHandle = @(x)

-2*pi*[( s i n(2*pi*x(:,1)).*cos(2*pi*x(:,2)))’;

(cos(2*pi*x(:,1)).* s i n(2*pi*x(:,2)))’];

6

7 % Plot mesh

8 f i g u r e(1)

9 triplot(Mesh.Elements(:,:),Mesh.Coordinates(:,1),Mesh.Coordinates(:,2))

10

11 % Assemble stiffness matrix and load vector

12 A = assemMat_LFE(Mesh,@Elmat_LaplMass_LFE); %

Stiffness matrix in sparse format

13 L = assemLoad_LFE(Mesh,@localLoadLFE,FHandle);

14

15 % No Dirichlet boundary data => no modification of rhs

16

17 % Solve the linear system

18 U = A\L;
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Figure 6.1: Solution plot for subproblem (6.1j).

19

20 % Plot solution

21 f i g u r e(2)

22 trisurf(Mesh.Elements(:,:),Mesh.Coordinates(:,1),Mesh.Coordinates(:,2),U)

23 c o l o r b a r

24

25 % Compute the errors

26 L2err = L2Err_LFE(Mesh,U,UHandle);

27 H1serr = H1SErr_LFE(Mesh,U,GradUHandle);

Listing 6.11: Testcalls for Problem 6.1

1 Vertices = [0 0; 1 0; 0 1];

2 FHandle = @(x) x(:,1).*x(:,2);

3

4 Mesh = load([’Square.mat’]);

5

6 f p r i n t f(’\n##gradbarycoords’)

7 gradbarycoords_ref(Vertices)

8

9 f p r i n t f(’\n##Elmat_Lapl_LFE’)

10 Elmat_Lapl_LFE_ref(Vertices)

11

12 f p r i n t f(’\n##Elmat_Mass_LFE’)

13 Elmat_Mass_LFE_ref(Vertices)

14

15 f p r i n t f(’\n##Elmat_LaplMass_LFE’)

16 Elmat_LaplMass_LFE_ref(Vertices)

17

18 f p r i n t f(’\n##localLoadLFE’)

19 localLoadLFE_ref(Vertices,FHandle)
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20

21 f p r i n t f(’\n##assemMat_LFE’)

22 A = assemMat_LFE_ref(Mesh,@Elmat_LaplMass_LFE);

23 A(1:10,1:10)

24

25 f p r i n t f(’\n##assemLoad_LFE’)

26 L = assemLoad_LFE_ref(Mesh,@localLoadLFE,FHandle);

27 L(1:10)

Listing 6.12: Output for Testcalls for Problem 6.1

1 testcall

2

3 ##gradbarycoords

4 ans =

5

6 -1 1 0

7 -1 0 1

8

9 ##Elmat_Lapl_LFE

10 ans =

11

12 1.0000 -0.5000 -0.5000

13 -0.5000 0.5000 0

14 -0.5000 0 0.5000

15

16 ##Elmat_Mass_LFE

17 ans =

18

19 0.0833 0.0417 0.0417

20 0.0417 0.0833 0.0417

21 0.0417 0.0417 0.0833

22

23 ##Elmat_LaplMass_LFE

24 ans =

25

26 1.0833 -0.4583 -0.4583

27 -0.4583 0.5833 0.0417

28 -0.4583 0.0417 0.5833

29

30 ##localLoadLFE

31 ans =

32

33 0

34 0.0208

35 0.0208

36

37 ##assemMat_LFE

38 ans =

39
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40 (1,1) 1.0001

41 (2,2) 1.0002

42 (3,3) 1.0001

43 (4,4) 1.0002

44 (5,5) 2.0002

45 (6,6) 2.0002

46 (7,7) 4.0005

47 (8,8) 2.0002

48 (9,9) 2.0002

49 (10,10) 2.0002

50

51 ##assemLoad_LFE

52 ans =

53

54 1.0e-03 *
55

56 0

57 0.0038

58 0.1602

59 0.0038

60 0.0025

61 0.0025

62 0.2441

63 0.2441

64 0.2441

65 0.0012

Problem 6.2 Rigidity of Piecewise Polynomial Continuous Functions

[NPDE, Section 3.3] and, particular, [NPDE, Section 3.5] probably created the impression that

the construction of a viable finite element space is straightforward: one starts from a mesh, fixes

a piecewise polynomial space and, finally, finds suitable locally supported basis functions. How-

ever, at each stage this procedure can fail, which is strikingly demonstrated in this problem.

Let M = {K} be a tensor product mesh, see [NPDE, Section 3.4.1], as depicted in Figure 6.2

with Nx, Ny grid lines in x- and y-direction, respectively. All cells (elements) are rectangles, and

there are N = NxNy vertices in the mesh.

(6.2a) Define the function space

WN =
{
v ∈ H1

0 (Ω)
∣∣ v|K ∈ P1(R

2), ∀K ∈ M
}
,

of piecewise linear functions (see [NPDE, Def. 3.4.8]) on each element of M, that are zero at the

boundary. What is the dimension of WN?

HINT: Remember from [NPDE, § 3.3.8] that an (affine) linear function R
2 7→ R is already fixed

by prescribing values in three non-collinear points.

Solution: The dimension is actually zero. Consider a corner element. Since the function must be

zero on the boundary, it must be zero in three of four vertices of this element. Because a linear

function is fixed by its values in three non-collinear points, it must be the zero function, so it is
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Figure 6.2: A tensor product mesh.

also zero on the last vertex. In this way, one can reason that the function must be zero on all

vertices, and so the only function in WN is the zero function.

(6.2b) Define the function space

VN =
{
v ∈ H1(Ω)

∣∣ v|K ∈ P1(R
2) ∀K ∈ M

}
,

of piecewise linear functions on each element of M. What is the dimension of VN?

Solution: In the same way as before, we see that the values of all vertices will be given if we only

prescribe the values on two non-parallel edges of the boundary. Then we can iterate through the

elements in the right order, using three vertices with known values to get the value of the fourth

vertex. There are Nx + Ny − 1 vertices we can define to begin with, and so this must be the

dimension of VN .

(6.2c) Define the function space

VN =
{
v ∈ H1(Ω)

∣∣ v|K ∈ Q1(R
2) ∀K ∈ M

}
,

of piecewise bi-linear functions on each element of M, see [NPDE, Def. 3.4.13]. What is the

dimension of this VN?

Solution: This is the Lagrangian finite element space introduced in [NPDE, Section 3.5.2] and

[NPDE, Ex. 3.5.8] and its dimension agrees with the total number of vertices of the mesh, which

serve as interpolation points in this case.

(6.2d) If we abandon nice “confoming” finite element meshes and even admit “hanging nodes”,

additional difficulties loom. To appreciate this, now consider the non-conforming triangular mesh

M of Ω = ]0, 1[2 in Figure 6.3. There, the hanging nodes are located on the midpoints of the

edges of the other triangle.

Determine the dimension of the space

WN =
{
v ∈ C0(Ω)

∣∣ v|K ∈ P1(R
2) ∀K ∈ M, v|∂Ω = 0

}
,

and describe a basis of locally supported functions.
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Figure 6.3: Non-conforming triangular mesh

Solution: As we have zero boundary conditions, we only have degrees of freedom in the internal

nodes. However, one must also neglect the dofs in the hanging nodes, since in these vertices we

cannot define a basis function which is continuous in the domain and a linear polynomial when

restricted to each element. Recall that a function p ∈ P1 is uniquely determined by the value at 3

non-aligned points, so the hanging nodes located at the midpoints pose a contradiction.

In this concrete example, this leads us to 7 basis functions, as marked with yellow dots in Figure

6.4.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.4: Non-conforming triangular mesh.

(6.2e) What is the dimension of the space obtained from WN by dropping the boundary condi-

tion v|∂Ω = 0. Also in this case describe a basis and specify the supports of the basis functions.
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Solution: For the reasons stated above, we neglect the dofs in the hanging nodes (hollow gray

circles in Figure 6.4) . Thus, in this particular setting we have 24 “tent” basis functions.

Problem 6.3 Convection Bi-linear Form

Hitherto, in class we have exclusively studied (linear) variational problems with symmetric bilin-

ear forms, which are connected with quadratic minimization problems, as explained in [NPDE,

Section 2.2.3]. Yet, many PDE models have variational formulations that involve non-symmetric

bilinear forms. A simple representative will be examined in this problem. We will practise

multi-dimensional integration by parts from [NPDE, Section 2.5.1] and also some local compu-

tations connected with Galerkin discretization by means of linear finite elements, see [NPDE,

Section 3.3.5].

Let Ω ⊂ R
2 be a bounded polygonal domain. We define the convection bilinear form as

a(u, v) =

∫

Ω

(b(x) · gradu(x))v(x) dx, u ∈ H1(Ω), v ∈ L2(Ω),

where b : Ω → R
2 is a vector field, with each component in H1(Ω).

(6.3a) Show that for u, v ∈ H1
0 (Ω)

a(u, v) = −
∫

Ω

u(x) div(b(x)v(x)) dx.

HINT: Use Green’s formula [NPDE, Thm. 2.5.9]

Solution: First notice

a(u, v) =

∫

Ω

(b(x) · grad u(x))v(x) dx =

∫

Ω

(v(x)b(x)) · grad u(x) dx.

Then, using Green’s formula we get

a(u, v) = −
∫

Ω

div(v(x)b(x))u(x) dx+

∫

∂Ω

(b(x) · n)u(x)v(x),

as the boundary term is zero when u, v ∈ H1
0 (Ω), we complete our proof.

(6.3b) Show that, if divb(x) = 0, then

a(u, u) = 0, ∀u ∈ H1
0 (Ω).

HINT: Use the general product rule [NPDE, Lemma 2.5.4].

Solution: Consider the formula obtained in the previous subproblem:

a(u, v) = −
∫

Ω

div(v(x)b(x))u(x) dx,

and the general product rule

div(b(x)v(x)) = v(x) divb(x) + b(x) · grad v(x).
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Combining these two we get

a(u, v) = −
∫

Ω

divb(x)u(x)v(x) dx−
∫

Ω

(b(x) · grad v(x))u(x) dx.

In particular,

a(u, u) = −
∫

Ω

divb(x)u(x)u(x) dx− a(u, u),

from where

a(u, u) = −1

2

∫

Ω

divb(x)u(x)u(x) dx,

which becomes zero when divb(x) = 0.

(6.3c) Show that, if divb(x) = 0 and b(x) · n = 0 on ∂Ω, then

a(u, u) = 0, ∀u ∈ H1(Ω).

Solution: Taking the cue of subproblem (6.3a), we use Green’s formula to obtain

a(u, v) = −
∫

Ω

div(v(x)b(x))u(x) dx+

∫

∂Ω

(b(x) · n)u(x)v(x),

In addition, by the general product rule we can rewrite it as

a(u, v) = −
∫

Ω

divb(x)u(x)v(x) dx− a(v, u) +

∫

∂Ω

(b(x) · n)u(x)v(x).

Therefore

a(u, u) =
1

2

(
−
∫

Ω

divb(x)u(x)v(x) dx+

∫

∂Ω

(b(x) · n)u(x)v(x)
)
,

and we get a(u, u) = 0, ∀u ∈ H1(Ω), if divb(x) = 0 and b(x) · n = 0 on ∂Ω.

(6.3d) Show that

a(u, u) > 0, ∀u ∈ H1
0 (Ω),

if − divb(x) is uniformly positive ( see [NPDE, Def. 2.2.15]).

Solution: From our computations in subproblem (6.3b), we know

a(u, u) = −1

2

∫

Ω

divb(x)u(x)u(x) dx,

If − divb(x) is uniformly positive, then ∃0 < γ− ≤ γ+ < ∞ : γ− ≤ − divb(x) ≤ γ+ for almost all x ∈
Ω. Consequently, the integral satisfies

a(u, u) = −1

2

∫

Ω

divb(x)|u(x)|2 dx ≥ γ−

∫

Ω

|u(x)|2 dx > 0.

From now on assume that the vector field is constant on Ω: b(x) := b, ∀x ∈ Ω.
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We perform a Finite Element Galerkin discretization of the linear variational problem: Seek

u ∈ H1
0 (Ω) such that

a(u, v) = ℓ(v), ∀v ∈ L2(Ω),

on a triangular mesh M and based on the discrete trial and test space S0
1,0(M) (linear finite

elements as [NPDE, Section 3.3]). The nodal basis of “tent functions” as introduced in [NPDE,

Section 3.3.3] is used throughout.

(6.3e) Write a C++ function

template <class Coord_t, class Vector2d, class Matrix>

void locMatConvect( Coord_t const & a1, Coord_t const & a2,

Coord_t const & a3, Vector2D const & b,

Matrix & elmat)

that computes the element matrix for a(·, ·) on a triangle K with vertices a1,a2,a3, whose coor-

dinates are passed in as a1, a2, a3. The argument b supplies the vector b.

Objects of type Coord t and Vector2D represent vectors with 2 components and must allow

component access via [0] and [1].

Matrix objects provide the following methods and types

• value t

• index t

• rows()

• cols()

• value t operator( index t, index t) const to access the matrix values.

• value t & operator( index t, index t) to assign the matrix values.

the elmat instance passed as argument can be assumed to have the right size.

A C++ template file is available in the lecture’s webpage as guidance for implementation.

Remark: Note that essential conditions don’t matter at the level of element matrices.

HINT: Revising [NPDE, Section 3.3.5] might be useful, particularly to compute the gradients.

Listing 6.13: Testcall for subproblem (6.3e) (fragment from main file).

1 // test call:

2 // initialize vertices and b vector

3 coo rd t a1 (0 ,1 ) , a2 (2 ,1 ) , a3 (1 ,3 ) ;

4 v e c t o r t b ( 2 ) ; b . setOnes ( ) ;

5 // initialize local matrix and call locMatConvect

6 m a t r i x t l o c a l (3 ,3 ) ;

7 locMatConvect ( a1 , a2 , a3 , b , l o c a l ) ;

8 // print the obtained matrix

9 std : : cout << ” l o c a l mat r i x f o r element w i th v e r t i c e s : ( ”
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10 << a1 . transpose ( ) << ” ) , ( ” << a2 . transpose ( ) << ” ) , ( ”

11 << a3 . transpose ( ) << ” ) : \n \n ” << l o c a l << std : : endl ;

Listing 6.14: Output for Testcalls for subproblem (6.3e)

1 l o c a l mat r i x f o r element w i th v e r t i c e s : (0 1) , (2 1) , (1 3) :

2

3 −0.5 0.166667 0.333333

4 −0.5 0.166667 0.333333

5 −0.5 0.166667 0.333333

Solution: From [NPDE, Section 3.3.5], we know the local matrix is given by

aK(b
j
N , b

i
N) =

∫

K

(b · grad bj
N |K)b

i
N |K dx.

Since the gradient is constant for linear finite elements, this reduces to:

aK(b
j
N , b

i
N) = (b · grad bj

N |K)

∫

K

biN |K dx = (b · grad bj
N |K)

|K|
3

.

Using the formula for the gradients, we notice the element’s area is cancelled and the implemen-

tation follows as in the listing Listing 6.15.

Listing 6.15: Implementation for locMatConvect

1 # i n c l u d e <stdexcept>

2 # i n c l u d e <casser t>

3 # i n c l u d e <c s t d l i b >

4 # i n c l u d e <math . h>

5 # i n c l u d e <iostream>

6 // Eigen headers

7 # i n c l u d e <Eigen / Dense>

8

9 us ing namespace std ;

10 us ing v e c t o r t = Eigen : : VectorXd ;

11 us ing coo rd t = Eigen : : Vector2d ;

12 us ing m a t r i x t = Eigen : : Matr ixXd ;

13

14 t emplate <c l a s s Coord t , c l a s s Vector2D , c l a s s Matr ix>

15 void locMatConvect ( Coord t c o n s t& a1 , Coord t c o n s t& a2 ,

16 Coord t c o n s t& a3 , Vector2D c o n s t& b ,

17 Mat r i x & elmat ) {
18 // Compute the gradients (considering the are will cancel)

19 Mat r i x grad (2 ,3 ) ;

20 grad (0 ,0 ) = ( a2 [ 1 ] − a3 [ 1 ] ) / 2 . 0 ;

21 grad (1 ,0 ) = ( a3 [ 0 ] − a2 [ 0 ] ) / 2 . 0 ;

22 grad (0 ,1 ) = ( a3 [ 1 ] − a1 [ 1 ] ) / 2 . 0 ;

23 grad (1 ,1 ) = ( a1 [ 0 ] − a3 [ 0 ] ) / 2 . 0 ;

24 grad (0 ,2 ) = ( a1 [ 1 ] − a2 [ 1 ] ) / 2 . 0 ;

25 grad (1 ,2 ) = ( a2 [ 0 ] − a1 [ 0 ] ) / 2 . 0 ;

26
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27 // Fill the matrix

28 f o r ( i n t i = 0 ; i <3; i ++)

29 f o r ( i n t j = 0 ; j <3; j ++)

30 elmat ( j , i ) = ( b [ 0 ] ∗ grad (0 , i ) +b [ 1 ] ∗ grad (1 , i ) ) / 3 . 0 ;

31 }
32

33 i n t main ( i n t argc , char ∗argv [ ] ) {
34 // initialize vertices and b vector

35 coo rd t a1 (0 ,1 ) , a2 (2 ,1 ) , a3 (1 ,3 ) ;

36 v e c t o r t b ( 2 ) ; b . setOnes ( ) ;

37 // initialize local matrix and call locMatConvect

38 m a t r i x t l o c a l (3 ,3 ) ;

39 locMatConvect ( a1 , a2 , a3 , b , l o c a l ) ;

40 // print the obtained matrix

41 std : : cout << ” l o c a l mat r i x f o r element w i th v e r t i c e s : ( ”

42 << a1 . transpose ( ) << ” ) , ( ” << a2 . transpose ( ) << ” ) , ( ”

43 << a3 . transpose ( ) << ” ) : \n \n ” << l o c a l << std : : endl ;

44

45 re turn 0;

46 }

(6.3f) Show that the Galerkin matrix is skew-symmetric.

HINT: A square matrix A is skew-symmetric, if AT = −A. Also recall the computations of

subproblem (6.3a).

Solution: In subproblem subproblem (6.3a) we found

a(u, v) = −
∫

Ω

u(x) div(bv(x)) dx,

which boils down to

a(u, v) = −
∫

Ω

u(x)(b · grad v(x)) dx = −a(v, u).

Therefore, the corresponding Galerkin matrix is given by

(A)ij =

∫

Ω

(b · grad bjN)b
i
N dx = −

∫

Ω

(b · grad biN)b
j
N dx = −(A)ji,

proving that the Galerkin matrix is skew-symmetric.

Problem 6.4 Hybrid-Mesh Galerkin Matrices and Right-Hand Side Vec-

tors

In [NPDE, Rem. 3.5.16] we saw that both linear and bilinear Lagrangian finite elements can

be easily blended on a 2D hybrid mesh comprising both quadrilaterals and triangles. In this

exercise we study the details of such a finite element method with focus on local computations

and assembly.

Figure 6.5 displays a hybrid mesh M consisting of 13 vertices, 8 triangular elements and 4 quadri-

lateral elements. The coordinates of some of the vertices are

a
7 = (0, 0), a

1 = (0, 1), a
4 = (1, 1)/

√
2, a

3 = (0, 1)/
√
2.
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The coordinates of the rest follow from symmetry.

In this problem we will compute the Galerkin matrix for (bi-)linear Lagrangian finite elements

[NPDE, Section 3.5] on such a mesh for the bilinear form asscociated with −∆

a(u, v) =

∫

Ω

grad u(x) · grad v(x) dx, u, v ∈ H1(Ω), (6.4.1)

and the right-hand side vector arising from the linear form

ℓ(v) =

∫

Ω

f(x)v(x) dx, (6.4.2)

with f ∈ C0(Ω).
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Figure 6.5: A hybrid mesh of triangles and quadrilaterals.

(6.4a) What is the dimension of the finite element space S0
1 (M)?

HINT: See [NPDE, Rem. 3.5.16].

Solution: The dimension is 13. There is one basis function for each node.

(6.4b) Compute the 4 × 4 element Galerkin matrix for one of the squares using the standard

bilinear local shape functions from [NPDE, Eq. (3.5.10)]

HINT: All the square elements are equal, and they have side lengths 1/
√
2. Number the nodes

either clockwise or counterclockwise around the square (due to symmetry, any such numbering

should yield the same matrix). There are two ways to compute their corresponding element

matrices and you may choose either of them:
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1. direct evaluation of the localized bilinear form aK for pairs of local shape functions. Note

that their gradients are not constant this time.

2. computation of the Galerkin matrix on the unit square, and subsequent transformation. See

[NPDE, Eq. (3.5.10)] for the basis functions on the unit square. [NPDE, Section 3.7.3]

explains transformation techniques. Your transformation Φ in this case will simply be a

scaling.

Solution: Using the transformation technique we get

AK
i,j =

∫

K̂

grad b̂i(x̂) · grad b̂j(x̂) dx̂.

Due to symmetry, we only have to evaluate this integral for three different choices of i, j. Note

that with the standard node numbering from [NPDE, Eq. (3.5.10)] we get

grad b̂1(x̂1, x̂2) = (x̂2 − 1, x̂1 − 1)

grad b̂2(x̂1, x̂2) = (1− x̂2,−x̂1)

grad b̂3(x̂1, x̂2) = (x̂2, x̂1)

grad b̂4(x̂1, x̂2) = (−x̂2, 1− x̂1).

The computation is

AK
i,i = AK

3,3 =

∫

K̂

(
x̂2
1 + x̂2

2

)
dx̂ = 2

∫ 1

0

x̂2
1 dx̂1 =

2

3
,

AK
i,i±2 = AK

1,3 =

∫

K̂

(x̂1(1− x̂1) + x̂2(1− x̂2)) dx̂

= 2

∫ 1

0

x̂1(1− x̂1) dx̂1 = −1

3
,

AK
i,i±1 = AK

i,i±3 = AK
1,4 = −

∫

K̂

(
(x̂1 − 1)2 + x̂2(x̂2 − 1)

)
dx̂

= −
∫ 1

0

(x̂1 − 1)2 dx̂1 −
∫ 1

0

x̂2(x̂2 − 1) dx̂2 = −1

6
.

So in the end we get

AK =
1

6




4 −1 −2 −1
−1 4 −1 −2
−2 −1 4 −1
−1 −2 −1 4


.

(6.4c) Compute the 3 × 3 element Galerkin matrix for the triangle with vertices 1, 2, 3 using

the standard linear local shape functions (barycentric coordinate functions, see )

HINT: The triangle has side lengths 1/
√
2, 1−1/

√
2 and

√
2−

√
2. Check out [NPDE, Eq. (3.3.21)].

Use the local node numbering inherited from the global one (i.e. vertex 1 is number 1, and so on).
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Solution: The cotangents are

cotω1 =
√
2− 1,

cotω2 =
1√
2− 1

,

cotω3 = 0,

giving

AK =
1√
2− 1




1 −1

(
√
2− 1)2 −(

√
2− 1)2

−1 −(
√
2− 1)2 (

√
2− 1)2 + 1


.

(6.4d) Compute the element right-hand side vector for a quadrilateral cell. For this, use the

quadrature formula ∫

K

f(x) dx ≈ |K|
4

4∑

i=1

f(ai), (6.4.3)

where ai are the vertices of the square K.

Solution: Note that the area of the quadrilaterals are 1/2. The quadrature rule should then give

LK
i =

1

8
f(ai),

since the basis functions are only supported on one vertex each.

(6.4e) What is the full 13×13 Galerkin matrix for the numbering of nodes given in Figure 6.5?

HINT: Do an assembly “by hand” (see [NPDE, Section 3.6.3]). For each pair of neighboring

vertices i, j, walk through the elements shared by i and j, find the local element contribution

from subproblems (6.4b) or (6.4c) and sum them up.

Solution: Define p =
√
2/6 and q =

√
2− 1. Then,

A =




2
q

−2
q

4p+ 2q −p− q −p− q −2p
−2

q
−p− q 8p+ 2q + 2

q
−p− q −2p −2p −2p

−p− q 4p+ 2q −2p −p− q
2
q

−2
q

−p− q −2p −2
q

8p+ 2q + 2
q

−2p −p− q −2p

−2p −2p −2p −2p 16p −2p −2p −2p −2p
−2p −p− q −2p 8p+ 2q + 2

q
−2

q
−2p −p− q

−2
q

2
q

−p− q −2p 4p+ 2q −p− q
−2p −2p −2p −p− q 8p+ 2q + 2

q
−p− q −2

q

−2p −p− q −p− q 4p+ 2q
−2

q
2
q




(6.4f) Compute the full right-hand side vector using the local contributions found in subproblem (6.4d).

For the local contributions from the triangles, you can use the corresponding quadrature rule there,

∫

K

f(x) dx ≈ |K|
3

3∑

i=1

f(ai),
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with ai the vertices of the triangle.

Solution: The quadrature rule gives the following formula for the triangle contributions:

LK
i =

r

8
f(ai),

where r = 2(
√
2− 1)/3. That should give the following right-hand side vector:

L1 = L5 = L9 = L13 = 2rf(ai)/8,

L2 = L4 = L10 = L12 = (2r + 1)f(ai)/8,

L3 = L6 = L8 = L11 = (2r + 2)f(ai)/8,

L7 = 4f(a7)/8,

where in each case, i will have to be replaced with the relevant node number.

(6.4g) [NPDE, Rem. 3.5.18] discusses the choice of interpolation nodes and, thus, implicitly,

the choice of global shape functions, for quadratic Lagrangian finite elements on hybrid meshes.

What is the dimension of S0
2 (M), if M is the hybrid mesh display in Figure 6.5?

Solution: Let NV , NE, NT , NQ the number of vertices, edges, triangles and quadrilaterals re-

spectively. Then the dimension of S0
2 (M) is NV +NE +NQ = 41.

(6.4h) Consider the Galerkin matrix AQ for a general linear second-order elliptic Neumann

boundary value problem when the space S0
2 (M) of quadratic Lagrangian finite elements on the

hybrid mesh from Figure 6.5 is used as a trial and test space. Give a sharp bound on the number

nnz(AQ) of non-zero entries of AQ.

HINT: In light of the supports of global shape functions, which pairs of them can interact in the

bilinear form?

Solution: For this particular setting, we notice there are 4 possible situations for vertix nodes,

4 for edges nodes and just one for midpoint nodes. Adding the nodes which interact with each

other and substracting the overlaps, one obtains 473 non-zero entries.

In light of the supports of global shape functions, we can extend this to a general hybrid mesh.

First we take into account that we have NV + NE + NQ diagonal entries. For each edge,

we have 3x2 entries, since each edge connects 3 couples of nodes. Each triangle supports 3

vertex/opposite-edge and 3 edge/edge interactions, contributing with 6x2 entries. Each quadri-

lateral supports 8 vertex/midpoint, 8 vertex/opposite-edge, 4 consecutive-edge and 4 opposite-

vertex interactions, therefore 24x2 entries in total. Finally, adding all these quantities, we get

NV + 7NE + 12NT + 49NQ non-zero entries. In particular, for the hybrid mesh from Figure 6.5

this is 473.

Published on March 25.
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