
R. Hiptmair
L. Scarabosio
C. Urzua Torres

Spring Term 2015

Numerical Methods for Partial
Differential Equations

ETH Zürich
D-MATH

Homework Problem Sheet 7

Introduction. This problem sheet is your first encounter with finite element implementation in
C++ using a DUNE-style interface. It covers many aspects addressed in [NPDE, Section 3.6] and
[NPDE, Section 3.6.3]. Doing the problems is essential for become familiar with DUNE.

Problem 7.1 Generating and Writing Mesh Data
This problem addresses how to generate a mesh with Gmsh, use DUNE to construct a Grid from
a .msh-file and output it in Vtk format, so it can, for instance, be visualized using Paraview. As
a preparation please study the material of [NPDE, Section 3.6.1].

(7.1a) First we start by generating a mesh with Gmsh. In order to achieve this task, you are
required to:

• Build a rectangle with vertices: {(0,0), (2,0), (2,1), (0,1)}
using Modules -> Geometry.

• Generate a mesh with Modules -> Mesh -> 2D.

• Refine your mesh using Modules -> Mesh -> Refine by splitting.
Do this a couple of times until you get around 32 elements.

HINT: You can use Tools -> Statistics -> Mesh to see the number of elements
in the current mesh.

• Finally save your mesh as a rect.msh.

(7.1b) Follow the steps stated in subproblem (7.1a), now to build a unit circle centered at (0,0).
Refine until you get around 64 elements and save it as circle.msh.

(7.1c) Write a C++ code which reads a .msh-file file and uses the obtained data to initialize
a triangular mesh. Remember that in this course we use Dune::ALUSimplexGrid<2,2> as
grid implementation.

HINT: [NPDE, Rem. 3.6.11] might be of use.

(7.1d) Write a C++ code which writes the Grid generated with Dune into a .vtu-file.

HINT: Use Dune::VTKWriter<GridView>vtkwriter(const GridView & gv).

Problem Sheet 7 Page 1 Problem 7.1

(7.1e) Write a main file to test your code from subproblem (7.1c)–(7.1d). Then run it using the
meshes you generated in subproblem (7.1a)–(7.1b). Finally open the output files using Paraview
and store the plots as PDF files.

HINT: You may as well write the last 3 subtasks together. A template file main.cc is available
in the lecture svn repository in the folder

assignments codes/assignment7/Problem1

Problem 7.2 Area and Perimeter Using DUNE (Core problem)
In this problem we practice how to import a mesh from a .msh-file and explore DUNE mesh
data structures covered in [NPDE, Section 3.6.2]. Particularly, using the notation introduced in
the lecture material, we deal with the following DUNE data types

• GridView::template Codim<k>::Iterator (→ [NPDE, Code 3.6.17])

• GridView::template Codim<k>::Entity (→ [NPDE, Code 3.6.23], Link)

• GridView::template Codim<k>::EntityPointer (→ [NPDE, Code 3.6.23],
Link)

• GridView::Intersection (→ [NPDE, Code 3.6.30], Link)

• GridView::IntersectionIterator (→ [NPDE, Code 3.6.30])

• Entity::Geometry (→ [NPDE, Code 3.6.27], Link)

Please study the related explanations given in the course material unless you remember the details.

(7.2a) Write a (templated, DUNE-based) C++-function

double getDomainArea(GridView const& gv)

which takes as input the GridView gv, uses it to iterate over the grid elements, adds each
element’s area to the domain’s area, and returns the total value.

HINT: Remember that in DUNE elements are entities of co-dimension 0. Thus, we use

GridView::template Codim<0>::Iterator

to traverse the elements of our DUNE grid as in [NPDE, Ex. 3.6.16].

HINT: In [NPDE, § 3.6.25], we learned that DUNE Entities provide access to a Geometry struc-
ture through the method geometry(). Moreover, this structure contains the method volume(),
which returns the volume/length of the geometric entity.

Problem Sheet 7 Page 2 Problem 7.2

http://www.dune-project.org/doc/doxygen/html/group__GIEntity.html
http://www.dune-project.org/doc/doxygen/html/group__GIEntityPointer.html
http://www.dune-project.org/doc/doxygen/html/group__GIIntersectionIterator.html
http://www.dune-project.org/doc/doxygen/html/group__GIGeometry.html

(7.2b) Implement a (templated, DUNE-based) C++ function

double getDomainPerimeter(GridView const& gv)

which takes the GridView gv and returns the domain’s perimeter.

HINT: You should follow a similar strategy to the one proposed in subproblem (7.2a), only now
we are interested in the length of the edges located in the boundary.

HINT: As explained in [NPDE, § 3.6.28], an intersection object is equipped with the methods
geometry() and boundary(). Since the latter returns true when the edge is on the boundary
of the grid, we will loop over Element’s intersections instead of edges.

(7.2c) Test the methods implemented in subproblem (7.2a) and subproblem (7.2b) using the
.msh-files you built in Problem 7.1. This means that you have to write a driver program for your
functions.

HINT: A template file main.cc is available in the lecture svn repository in the folder
assignments codes/assignment7/Problem2

Problem 7.3 Numerical Quadrature of a Given Function Using DUNE Data
Structures

This problem is devoted to numerically integrating generic functions using local quadrature rules
in the DUNE framework. In this task we are not going to rely on the quadrature facilities provided
by DUNE (→ [NPDE, Def. 3.6.66]), but we will implement a simple quadrature rule directly.

In order to complete this task, you should be able to import a mesh from a .msh-file an use
DUNE’s mesh data, as in problem Problem 7.2.

(7.3a) Implement a C++ function
template <class Function>

double trapRuleDomain(const GridView & gv, const Function & f)

which gets as input the GridView gv and the Function f as a lambda object, and uses
the 2D trapezoidal rule to numerically integrate f over the domain [NPDE, Eq. (3.3.45)].

HINT: The method corner(int i) available in Geometry might be useful, see [NPDE,
§ 3.6.25].

(7.3b) Write a C++ method
template <class Function>
double trapRuleBoundary(const GridView & gv, const Function & f)

which gets as input the GridView gv and the Function f as a lambda object, and uses
the 1D trapezoidal rule [NPDE, Eq. (1.5.72)] to numerically integrate the function f over the
boundary of the domain.

HINT: Use GridView::IntersectionIterator and the methods geometry() and
boundary() provided in GridView::Intersection, see [NPDE, § 3.6.28].

(7.3c) Test the methods implemented in subproblem (7.3a) and subproblem (7.3b) using the
lambda function

Problem Sheet 7 Page 3 Problem 7.3

auto f = [] {return 1.0;}

and the .msh-files you built in Problem 7.1. Are they close to your results in subproblem (7.2c)?

HINT: A template file main.cc is available in the lecture svn repository in the folder
assignments codes/assignment7/Problem3

Problem 7.4 Linear Finite Element Implementation for 2D Reaction-diffusion
using DUNE (Core problem)

In Problem 6.1 (last homework sheet), we considered the following Neumann problem on the unit
square Ω = [0, 1]2 with homogeneous Neumann data and reaction term (cf. [NPDE, Eq. (3.1.4)]):

u ∈ H1(Ω) :

∫
Ω

gradu · grad v + u v dx︸ ︷︷ ︸
:=a(u,v)

=

∫
Ω

fv dx︸ ︷︷ ︸
:=`(v)

∀v ∈ H1(Ω), (7.4.1)

and developed an efficient MATLAB code to discretize (7.4.1) on a triangular mesh using linear
finite elements. Now we will follow a similar approach to do this with a C++ code using a DUNE-
style interface.

As usual we will rely on Dune::ALUSimplexGrid<2,2> as grid implementation and access
the grid data structures through the GridView (cf. [NPDE, § 3.6.15]).

Template files for the different classes you will need to write are available in the lecture svn
repository in the folder

assignments codes/assignment7/Problem4

together with the implementation of the class MatrixAssembler shown in [NPDE, Ex. 3.6.48].

(7.4a) As we learned in [NPDE, Section 3.3.5], cell oriented assembly entails knowing the
global numbering of the basis functions associated with the vertices of each triangle. To this
end, we introduced the data structure of the DofHandler which provides a local→ global index
mapping, as detailed in [NPDE, § 3.6.37], see also [NPDE, Code 3.6.17] and the link to the online
DUNE documentation.

Taking the cue of [NPDE, Code 3.6.42] complete the following class

1 t empla te <c l a s s GridView t>
2 c l a s s DofHandler{
3 p u b l i c :
4 us ing c a l c t = double ;
5 us ing GridView = Gr idV iew t ;
6 us ing i n d e x t = typename GridView : : IndexSet : : IndexType ;
7 us ing Element = typename GridView : : t empla te

Codim<0>:: E n t i t y ;
8 enum { wd=GridView : : dimension } ;
9 enum { K=1 } ; //linear finite element

Problem Sheet 7 Page 4 Problem 7.4

http://www.dune-project.org/doc/doxygen/html/group__IndexIdSets.html

10 DofHandler (GridView c o n s t& gr idv iew) :
11 gv (g r idv iew) , se t (gv . indexSet ()) , o f f s e t (se t . s i ze (wd)) {} ;
12 // Operator providing the local → global index mapping

13 t empla te <c l a s s Element>
14 i n d e x t operator () (Element c o n s t& e , i n d e x t loca l idx)

c o n s t ;
15 bool a c t i v e (i n d e x t g idx) c o n s t { re turn true ; } ;
16 s i z e t s i z e l o c (Element c o n s t &e) c o n s t { re turn 3 ; } ;
17 s i z e t s ize () c o n s t { re turn set . s i ze (wd) ; }
18 GridView c o n s t& gv ;
19 p r i v a t e :
20 typename GridView : : IndexSet c o n s t& set ;
21 } ;

by implementing the method

template <class Element>
index_t operator()(Element const& e, index_t local_idx) const;

Taking an Element and a local index of a given dof, and returning its global index.

HINT: Use GridView::IndexSet.

(7.4b) Recall from [NPDE, Ex. 3.6.48], that to build the global system matrix with our cell-
oriented strategy, we introduced the class MatrixAssembler. This structure is equipped with
the method

template <class Triplets, class LocalAssembler>
void operator()(triplets & triplets, LocalAssembler const&

loc_asmblr) const;

which for each element calls the LocalAssembler to get the element matrix and distributes its
contribution to the triplets.

Implement a class AnalyticalLocalLaplace which provides a method

template <class Element, class Matrix>
void operator()(Element const& e, Matrix &local) const;

to compute the element matrix associated to the bilinear form

a1(u, v) =

∫
Ω

gradu · grad v dx, u, v ∈ H1(Ω),

and linear Lagrangian finite elements.

HINT: The solution of subproblems (6.1a) and (6.1b) might be useful. The implementation in
MATLAB was already discussed in [NPDE, Section 3.3.5] and is given in [NPDE, Code 3.3.25].
This function has to be translated into C++. In order to perform linear algebra operations, you
may rely on the facilities of the Eigen library, see [NPDE, Rem. 3.6.45].

(7.4c) Implement a class AnalyticalLocalMass which provides a method

Problem Sheet 7 Page 5 Problem 7.4

template <class Element, class Matrix>
void operator()(Element const& e, Matrix &local) const;

to compute the element matrix associated to the bilinear form

a2(u, v) =

∫
Ω

u v dx, u, v ∈ L2(Ω) ,

and linear Lagrangian finite elements on triangular elements.

HINT: Compute the entries of the element matrix by analytic evaluation of the two-dimensional
integrals. You already did this to solve subproblem (6.1c).

(7.4d) Now we focus on the global assembly of the right han side vector using DUNE (see
[NPDE, Eq. (3.6.51)]).

Following the structure shown in [NPDE, Eq. (3.6.52)], implement the class VectorAssembler
to assemble the right-hand side vector with linear finite element.

HINT: Note this is the C++ version of subproblem (6.1g).

(7.4e) Implement the class

template <class Function>
class LocalFunction

which provides a method

template <class Element>
void operator()(Element const& e, ElementVector &local) const;

to compute the element vector associated to the linear form `(v) =
∫

Ω
fv dx, and linear La-

grangian finite elements.

Notice that the function f should be passed to the constructor in procedural form. Therefore
the entries of the element vectors can be computed only approximately by means of numerical
quadrature, cf. [NPDE, § 3.3.44]. Use 2D trapezoidal quadrature rule.

HINT: Note this is similar to what you had to implement in subproblem (6.1e).

HINT: [NPDE, Code 3.6.99] might be useful.

(7.4f) Finally, as we already have all the required pieces to assemble the system matrix and
right hand side vector, we are ready to find an approximate solution of (7.4.1).

Write a main.cc that:

• Builds a grid from .msh file.

• Gets the grid view and uses it to initialize the DofHandler.

• Creates the system matrix using an Eigen Triplets in two stages:

– Fills the triplets with the contribution of a1(u, v).

– Does the same now with a2(u, v).

Problem Sheet 7 Page 6 Problem 7.4

• Construct the system matrix A from the triplets.

• Creates the right hand side vector Phi using and Eigen vector and the function.

auto f = [](Coordinate const& x){ re turn (1.0 +
2*M_PI*M_PI)*cos(M_PI*x[0])*cos(M_PI*x[1]); }

• Solves the system using Pardiso.

• Outputs the solution in Vtk format.

You should then test it using the mesh square 1024.msh provided in the repository.

HINT: Use the short-hand u = Phi/A to solve the system.

HINT: Use

template<class GridView>
template<class V >
Dune::VtkWriter<GridView>::addVertexData(const V & v, const

s t d::string & name, int ncomps = 1)

to write the solution vector to a Vtk format file (→ Link).

Published on 01.04.2015.
To be submitted on 15.04.2015.

References

[NPDE] Lecture Slides for the course “Numerical Methods for Partial Differential Equa-
tions”.SVN revision # 74741.

[NCSE] Lecture Slides for the course “Numerical Methods for CSE”.

Last modified on April 2, 2015

Problem Sheet 7 Page 7 References

http://www.dune-project.org/doc/doxygen/html/classDune_1_1VTKWriter.html
http://www.sam.math.ethz.ch/~hiptmair/tmp/NPDE/NPDE15.pdf
http://www.sam.math.ethz.ch/~hiptmair/tmp/NumCSE11_ext.pdf

	Problem Sheet 7
	7.1 Generating and Writing Mesh Data
	7.2 Area and Perimeter Using DUNE (Core)
	7.3 Numerical Quadrature of a Given Function Using DUNE Data Structures
	7.4 Linear Finite Element Implementation for 2D Reaction-diffusion using DUNE (Core)

