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Problem 9.1 Midpoint Quadrature on Triangles (Core problem)

Local quadrature is a core operation in any finite element computation, see [NPDE, Section 3.6.4].

This exercise examines a special local quadrature rule, the concept of order and the use of local

quadrature for computing element matrices.

The midpoint quadrature rule on the unit triangle is given by

∫

K̂

f(x̂) dx̂ ≈
1

6

∑

i

f(mi),

where mi are the midpoints of the edges of K̂.

(9.1a) Show that the midpoint quadrature rule is exact for f ∈ P2(R
2) that is, it is of order 3.

HINT: Find a simple basis for f ∈ P2(R
2) (see [NPDE, Def. 3.4.8]), integrate each basis function

and then compare to the value the quadrature rule would give. Since integration is linear, this

result will extend to all of P2(R
2). You may use [NPDE, Lemma 3.6.61].

(9.1b) Let K be any triangle. Find the element matrix for the bilinear form

aK(u, v) =

∫

K

u(x)v(x) dx

using midpoint quadrature, for Lagrangian finite elements of local polynomial degree 1 and 2.

HINT: See [NPDE, Section 3.3.5] and [NPDE, Eq. (3.5.6)] for the basis functions in barycentric

coordinates. You can use [NPDE, Lemma 3.6.61]. Assume that the area |K| of the triangle is

known.

Problem 9.2 The Duffy Trick

In [NPDE, Section 3.6.4.2] we learned that local quadrature rules on the cells of a finite element

mesh can be obtained by transformation, see [NPDE, § 3.6.83] for details. In this problem we

witness the use of a special transformation to generate quadrature rules on the reference triangle.

Consider the following mapping from the unit square Q := (0, 1)2 to the reference element

K :=
{
(x1, x2) ∈ R

2; 0 ≤ x1 ≤ 1 , 0 ≤ x2 ≤ 1− x1

}
defined by
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x1

x2

ξ

η
KQ

φ

x1 := ξ,

x2 := η(1− ξ).

This degenerate mapping can be used to transform the integration of a function f : K 7→ R

over the reference element K to an integration over the unit square Q. This approach is known

as Duffy trick and can be used to generate quadrature rules of arbitrary order on the reference

triangle.

(9.2a) Compute the Jacobian of the mapping φ : Q 7→ K and show that the following transfor-

mation formula holds true
∫

Q

f(ξ, η(1− ξ))(1− ξ) dξ dη =

∫

K

f(x1, x2) dx1 dx2 (9.2.1)

for an arbitrary function f : K 7→ R.

(9.2b) On the unit square one can use tensor product Gauss-Legendre quadrature formulas,

which are obtained as follows, see also [NPDE, Ex. 3.6.95]: If ζℓ ∈]0, 1[, ωℓ ∈ R, ℓ = 1, . . . , n,

are the nodes and weights, respectively, of the n-point Gauss-Legendre quadrature rule on [0, 1],
then we approximate

∫

Q

g(x1, x2) dx ≈
n∑

j=1

n∑

ℓ=1

ωjωℓg(ζj, ζℓ) . (9.2.2)

Show that this quadrature rule is of (maximal) order 2n.

HINT: The order of a quadrature rule has been introduced in [NPDE, Def. 3.6.87]. It is known

that the n-point Gauss-Legendre quadrature rule on an interval is of maximal order 2n.

(9.2c) We consider the quadrature formula on the unit triangle generated by the Duffy trick

from the n2-point tensor product Gauss-Legendre quadrature formula on the unit square presented

in subproblem (9.2b). Determine the (maximal) order of this rule.

HINT: According to [NPDE, Def. 3.6.87] you have to check, which integrals
∫
K
x
p
1 x

q
2 dx of

monomials with p + q ≤ m are integrated exactly. [NPDE, Lemma 3.6.61] is useful for that

purpose.

Problem 9.3 Parametric Finite Elements on Curved Triangles (Core prob-

lem)

In [NPDE, Section 3.7.4] we have seen how the paradigm of parametric finite elements can be

used to deal with curved elements, which is important for higher order resolution of boundaries

and interfaces. In this problem we study this technique for “triangular” elements whose edges are

pieces of parabolas.
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Taking the cue of [NPDE, § 3.7.30], we consider the quadratic transformation

ΦK̃(x̂) :=a
1λ̂1(x̂) + a

2λ̂2(x̂) + a
3λ̂3(x̂)+

d
34λ̂1(x̂)λ̂2(x̂) + d

14λ̂2(x̂)λ̂3(x̂) + d
24λ̂1(x̂)λ̂3(x̂)

(9.3.1)

mapping the reference triangle (unit triangle) K̂ to the triangle K̃ with curved edges, as shown

in Figure 9.1. Here λ̂i, i = 1, 2, 3, are the barycentric coordinate functions on K̂, and a
i, di are

given vectors ∈ R
2.
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Figure 9.1

(9.3a) Determine the location of the vertices of K̃ in terms of ai, di.

(9.3b) Give a geometric interpretation of the vectors di.

HINT: Rely on the image points of the midpoints of the edges of K̂ and use the notations from

Figure 9.1.

(9.3c) The mapping Φ̃K from [NPDE, Eq. (3.7.31)] in [NPDE, § 3.7.30] is a special version

of (9.3.1). Determine the corresponding values for ai and d
i using the local numbering as in

[NPDE, Fig. 153].

(9.3d) Compute the Jacobian matrix DΦK̃ .

(9.3e) Compute the determinant of Jacobian matrix |detDΦK̃ |.

(9.3f) Write a C++ Method

t emp late <c l a s s Funct ion>

void assemLocQuadTri ( s td : : vector<Coordinate> c o n s t & a ,

s td : : vector<Coordinate> c o n s t & d ,

Funct ion c o n s t& alpha , ElementMatr ix & l o c a l ) ;

which computes the element matrix for

∫

Ω

α(x) gradu(x) · gradv(x) dx,

where α(x) is a scalar coefficient. Use parametric piecewise linear Lagrangian finite elements

and the (transformed) edge midpoint quadrature rule from Problem 9.1.
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The method takes as inputs an arbitrary function alpha(Coordinate const & x), and the vectors a

and d (containing a
i and d

i respectively).

Recall Coordinate corresponds to Dune::FieldVector<calc t,world dim> and ElementMatrix cor-

responds to AnalyticalLocalMass::ElementMatrix in your implementation of subproblem (7.4b).

You can assume that ElementMatrix local has been initialized and set to zero before it is passed to

the method.

HINT: You may in addition use Eigen::Matrix2d for the Jacobian, as it is equipped with the

methods inverse() and determinant().

HINT: A template file is available in the lecture svn repository

assignments codes/assignment9/Problem3

There you will also find a testcall written in main.cc and its output in testcall output.txt

Problem 9.4 Poisson Equation on a Disk

This problem offers a comprehensive treatment of analytical and algorithmic techniques for para-

metric linear finite elements on general hybrid meshes (with straight edges), see, in particular

[NPDE, Section 3.7.2]. It also revisits assembly of Galerkin matrices from element matrices.

We consider the homogeneous Dirichlet problem for the Laplacian ∆:

−∆u = f in Ω, u = 0 on ∂Ω, (9.4.1)

where Ω is the unit disk

Ω :=
{
x ∈ R

2
∣∣ ‖x‖ < 1

}
.

Again, a student does not want to use any finite element library, but prefers to write a code for

this boundary value problem from scratch. Warned by his buddy that polar coordinates and a

finite difference discretization caused terrible difficulties, he opts for a finite element method on

a hybrid mesh comprising quadrilaterals and triangles like that depicted in Figure 9.2: the nodes

of the mesh are the origin and the intersection points of circles with radii j

N
, j = 1, . . . , N , with

rays at angles 2πj
N

, j = 1, . . . , N . He settles for a polygonal approximation of ∂Ω as in Figure 9.2.

On the hybrid mesh the student wants to employ a finite element Galerkin discretization of (9.4.1)

based on continuous trial/test function that are

• piecewise linear on the triangles (→ [NPDE, Section 3.3])

• parametrically mapped bilinear functions on the quadrilaterals (→ [NPDE, Section 3.7.2]).

As explained in class, for the quadrilaterals the mapping from the unit square is a bilinear trans-

formation, see [NPDE, Eq. (3.7.16)].

(9.4a) Give the coefficients of the bilinear transformation

ΦK(x̂) =

(
α1 + β1x̂1 + γ1x̂2 + δ1x̂1x̂2

α2 + β2x̂1 + γ2x̂2 + δ2x̂1x̂2

)
, αi, βi, γi, δi ∈ R ,

for the quadrilateral formed by the circles with radii j

N
and j+1

N
, 1 ≤ j < N , and the rays with

angles 2πm
N

and
2π(m+1)

N
, 0 ≤ m < N , see Figure 9.3.
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Figure 9.2: Hybrid mesh with piecewise linear approximation of ∂Ω. The red lines are the edges

of the mesh.
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Figure 9.3: quadrilateral element

(9.4b) Compute the Jacobian of the bilinear transformation from the subproblem (9.4a) and its

determinant. Both are functions on the unit square, see [NPDE, Ex. 3.7.27].

(9.4c) For the computation of the element (load) vectors the student chooses a simple one-

point quadrature formula based on the center of gravity (of a triangle or the unit square, respec-

tively). Based on this choice compute the element (load) vector for the general quadrilateral from

subproblem (9.4a).

(9.4d) The same one-point quadrature as in subproblem (9.4c) is used for the evaluation of

the element (stiffness) matrices. Compute the element matrix for the quadrilateral considered in

subproblem (9.4a).

(9.4e) What is the dimension of the finite element space V0,N ⊂ H1
0 (Ω)?
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(9.4f) Given the mesh in Figure 9.2 with the finite element space already described, sketch the

structure of the Galerkin matrix A. For this, number the nodes counterclockwise from the inner

part of the mesh to the exterior as indicated in the figure. Do you observe any pattern?

Published on 22.04.2015.

To be submitted on 29.04.2015.
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