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Problem 9.1 Midpoint Quadrature on Triangles (Core problem)

Local quadrature is a core operation in any finite element computation, see [NPDE, Section 3.6.4].

This exercise examines a special local quadrature rule, the concept of order and the use of local

quadrature for computing element matrices.

The midpoint quadrature rule on the unit triangle is given by

∫

K̂

f(x̂) dx̂ ≈
1

6

∑

i

f(mi),

where mi are the midpoints of the edges of K̂.

(9.1a) Show that the midpoint quadrature rule is exact for f ∈ P2(R
2) that is, it is of order 3.

HINT: Find a simple basis for f ∈ P2(R
2) (see [NPDE, Def. 3.4.8]), integrate each basis function

and then compare to the value the quadrature rule would give. Since integration is linear, this

result will extend to all of P2(R
2). You may use [NPDE, Lemma 3.6.61].

Solution: A basis for P2(R
2) is {1, x, x2, y, y2, xy}. Due to symmetry of the unit triangle, we

only have to test the functions {1, x, x2, xy}.

∫

K̂

1 dx̂ =
1

2
=

1

6
(1 + 1 + 1),

∫

K̂

x dx̂ =
1

6
=

1

6

(
1

2
+

1

2
+ 0

)
,

∫

K̂

x2 dx̂ =
1

12
=

1

6

(
1

22
+

1

22
+ 0

)
,

∫

K̂

xy dx̂ =
1

24
=

1

6

(
0 +

1

22
+ 0

)
.

For x3, the quadrature formula gives 1/24, where the correct integral is 1/20. This shows that the

midpoint quadrature rule is of order 3.

(9.1b) Let K be any triangle. Find the element matrix for the bilinear form

aK(u, v) =

∫

K

u(x)v(x) dx
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using midpoint quadrature, for Lagrangian finite elements of local polynomial degree 1 and 2.

HINT: See [NPDE, Section 3.3.5] and [NPDE, Eq. (3.5.6)] for the basis functions in barycentric

coordinates. You can use [NPDE, Lemma 3.6.61]. Assume that the area |K| of the triangle is

known.

Solution: For order 1,

A =
|K|

12



2 1 1
1 2 1
1 1 2


.

For order 2 the quadrature rule will give

A =
|K|

3




1
1

1



,

which is of course not correct (the integrands are of order 4). The right answer, according to

[NPDE, Lemma 3.6.61] and [NPDE, Eq. (3.5.6)] is

A =
|K|

180




9 −1 −1 −12 −12 −8
−1 9 −1 −12 −8 −12
−1 −1 9 −8 −12 −12
−12 −12 −8 32 16 16
−12 −8 −12 16 32 16
−8 −12 −12 16 16 32



.

Problem 9.2 The Duffy Trick

In [NPDE, Section 3.6.4.2] we learned that local quadrature rules on the cells of a finite element

mesh can be obtained by transformation, see [NPDE, § 3.6.83] for details. In this problem we

witness the use of a special transformation to generate quadrature rules on the reference triangle.

Consider the following mapping from the unit square Q := (0, 1)2 to the reference element

K :=
{
(x1, x2) ∈ R

2; 0 ≤ x1 ≤ 1 , 0 ≤ x2 ≤ 1− x1

}
defined by

x1

x2

ξ

η
KQ

φ

x1 := ξ,

x2 := η(1− ξ).

This degenerate mapping can be used to transform the integration of a function f : K 7→ R

over the reference element K to an integration over the unit square Q. This approach is known

as Duffy trick and can be used to generate quadrature rules of arbitrary order on the reference

triangle.
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(9.2a) Compute the Jacobian of the mapping φ : Q 7→ K and show that the following transfor-

mation formula holds true
∫

Q

f(ξ, η(1− ξ))(1− ξ) dξ dη =

∫

K

f(x1, x2) dx1 dx2 (9.2.1)

for an arbitrary function f : K 7→ R.

Solution: We have (
x1

x2

)
= φ(ξ, η) =

(
ξ

η(1− ξ)

)
.

Therefore, the Jacobian is given by Dφ =

(
1 0
−η 1− ξ

)
and the determinant |Dφ(ξ, η)| = 1− ξ.

Therefore using substitution we obtain

∫

K

f(x1, x2) dx1 dx2 =

∫

Q

f(ξ, η(1− ξ))(1− ξ) dξ dη.

(9.2b) On the unit square one can use tensor product Gauss-Legendre quadrature formulas,

which are obtained as follows, see also [NPDE, Ex. 3.6.95]: If ζℓ ∈]0, 1[, ωℓ ∈ R, ℓ = 1, . . . , n,

are the nodes and weights, respectively, of the n-point Gauss-Legendre quadrature rule on [0, 1],
then we approximate

∫

Q

g(x1, x2) dx ≈
n∑

j=1

n∑

ℓ=1

ωjωℓg(ζj, ζℓ) . (9.2.2)

Show that this quadrature rule is of (maximal) order 2n.

HINT: The order of a quadrature rule has been introduced in [NPDE, Def. 3.6.87]. It is known

that the n-point Gauss-Legendre quadrature rule on an interval is of maximal order 2n.

Solution: The result is easily obtained from the tensor product structure of the integral:

∫

Q

xp
1x

q
2 dx1 dx2 =

∫ 1

0

xp
1 dx1

∫ 1

0

xq
2 dx2,

for two integers p, q ≥ 0. Since the one-dimensional quadrature rule is of order 2n, the integral

above is exact for p, q ≤ 2n− 1 and thus the tensor product quadrature rule is of order 2n too.

(9.2c) We consider the quadrature formula on the unit triangle generated by the Duffy trick

from the n2-point tensor product Gauss-Legendre quadrature formula on the unit square presented

in subproblem (9.2b). Determine the (maximal) order of this rule.

HINT: According to [NPDE, Def. 3.6.87] you have to check, which integrals
∫
K
xp
1 x

q
2 dx of

monomials with p + q ≤ m are integrated exactly. [NPDE, Lemma 3.6.61] is useful for that

purpose.

Solution: For the one-dimensional integral

∫ 1

0

xp dx =
1

p+ 1
,
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we know that a n-point Gauss-Legendre rule integrates polynomial up to degree p ≤ 2n − 1
exactly.

From subproblem (9.2b), we know that the tensor product quadrature rule on Q integrates all

polynomials up to p, q ≤ 2n− 1 exactly.

On the triangle K :=
{
(x1, x2) ∈ R

2; 0 ≤ x1 ≤ 1 , 0 ≤ x2 ≤ 1− x1

}
we have

∫

K

xp
1x

q
2 dx1 dx2 =

∫

Q

ξpηq(1− ξ)q(1− ξ) dξ dη

=

∫ 1

0

ξp(1− ξ)q+1 dξ

∫ 1

0

ηq dη

=

∫ 1

0

ξp
q+1∑

k=0

(
q + 1

k

)
1q(−ξ)q+1−k dξ

∫ 1

0

ηq dη

=

q+1∑

k=0

(
q + 1

k

)
(−1)q+1−k

∫ 1

0

ξp+q+1−k dξ

∫ 1

0

ηq dη

=
p! q!

(p+ q + 2)!
.

The first integral is integrated exactly for p+ q+1−k ≤ 2n−1, k = 0, . . . , q+1 and the second

integral for q ≤ 2n−1. Therefore, we only have exact integration on K for p+q+1 ≤ 2n−1 and

the quadrature rule on K is of order 2n − 1. In other words, using the Duffy trick, the presence

of the jacobian of the transformation reduces by 1 the order of the quadrature rule when moving

from the square to the triangle.

Problem 9.3 Parametric Finite Elements on Curved Triangles (Core prob-

lem)

In [NPDE, Section 3.7.4] we have seen how the paradigm of parametric finite elements can be

used to deal with curved elements, which is important for higher order resolution of boundaries

and interfaces. In this problem we study this technique for “triangular” elements whose edges are

pieces of parabolas.

Taking the cue of [NPDE, § 3.7.30], we consider the quadratic transformation

ΦK̃(x̂) :=a
1λ̂1(x̂) + a

2λ̂2(x̂) + a
3λ̂3(x̂)+

d
34λ̂1(x̂)λ̂2(x̂) + d

14λ̂2(x̂)λ̂3(x̂) + d
24λ̂1(x̂)λ̂3(x̂)

(9.3.1)

mapping the reference triangle (unit triangle) K̂ to the triangle K̃ with curved edges, as shown

in Figure 9.1. Here λ̂i, i = 1, 2, 3, are the barycentric coordinate functions on K̂, and a
i, di are

given vectors ∈ R
2.

(9.3a) Determine the location of the vertices of K̃ in terms of ai, di.

Solution: Due to the properties of the mapping ΦK̃(x̂), we have that the vertices ai of K̃ are

a1 := ΦK̃(0, 0) = a
1,

a2 := ΦK̃(1, 0) = a
2,

a3 := ΦK̃(0, 1) = a
3.

(9.3.2)
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a
2

a
3

a
1

m
3

m
1

m
2

K̃

K̂

1

3

2

13 23

12

ΦK̃

1

Figure 9.1

(9.3b) Give a geometric interpretation of the vectors di.

HINT: Rely on the image points of the midpoints of the edges of K̂ and use the notations from

Figure 9.1.

Solution: Following the hint we get

m12 := ΦK̃(m̂12) =
a
1 + a

2

2
+ d

3,

m23 := ΦK̃(m̂23) =
a
2 + a

3

2
+ d

1,

m13 := ΦK̃(m̂13) =
a
1 + a

3

2
+ d

2.

(9.3.3)

Where the first terms correspond to the linear part of the transformation and d
i is the offset due

to the parabolic contribution.

(9.3c) The mapping Φ̃K from [NPDE, Eq. (3.7.31)] in [NPDE, § 3.7.30] is a special version

of (9.3.1). Determine the corresponding values for ai and d
i using the local numbering as in

[NPDE, Fig. 153].

Solution: From subproblem (9.3a), we already know that a1 = a
1, a2 = a

2 and a3 = a
3 (we

remind that the affine transformation from the reference triangle to the triangle in physical space

with straight edges maps vertices to vertices and barycentric coordinate functions to barycentric

coordinate functions).

Then, in [NPDE, Eq. (3.7.31)], only the edge connecting a1 to a2 is curved, and the midpoint

of the edge is displaced by δn. This means that d3 = δn, and d
1 = d

2 = 0 (because the other

two edges are not curved). Alternatively, since λ1λ2, λ2λ3 and λ1λ3 are linearly independent, the

same result can be obtained comparing (9.3.1) to [NPDE, Eq. (3.7.31)].

(9.3d) Compute the Jacobian matrix DΦK̃ .

Solution: First we compute

∂ΦK̃

∂x̂1

= −a
1 + a

2 + 4d3(−λ̂2 + λ̂1) + 4d1λ̂3 + 4d2(−λ̂3),

∂ΦK̃

∂x̂2

= −a
1 + a

3 + 4d3(−λ̂2) + 4d1λ̂2 + 4d2(−λ̂3 + λ̂1).
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From where we conclude the Jacobian matrix.

DΦK̃ =

(
(a2

1 − a
1
1) + 4m3

1(1− 2x̂1) + 4c1x̂2 (a3
1 − a

1
1) + 4m2

1(1− 2x̂2) + 4c1x̂1

(a2
2 − a

1
2) + 4m3

2(1− 2x̂1) + 4c2x̂2 (a3
2 − a

1
2) + 4m2

2(1− 2x̂2) + 4c2x̂1

)
,

where c := m
1 −m

2 −m
3.

(9.3e) Compute the determinant of Jacobian matrix |detDΦK̃ |.

Solution: As we have a 2× 2 matrix

(
A B
C D

)
,

the determinant follows from applying the formula AD −BC.

(9.3f) Write a C++ Method

t emplate <c l a s s Funct ion>

void assemLocQuadTri ( s td : : vector<Coordinate> c o n s t & a ,

s td : : vector<Coordinate> c o n s t & d ,

Funct ion c o n s t& alpha , ElementMatr ix & l o c a l ) ;

which computes the element matrix for
∫

Ω

α(x)gradu(x) · gradv(x) dx,

where α(x) is a scalar coefficient. Use parametric piecewise linear Lagrangian finite elements

and the (transformed) edge midpoint quadrature rule from Problem 9.1.

The method takes as inputs an arbitrary function alpha(Coordinate const & x), and the vectors a

and d (containing a
i and d

i respectively).

Recall Coordinate corresponds to Dune::FieldVector<calc t,world dim> and ElementMatrix cor-

responds to AnalyticalLocalMass::ElementMatrix in your implementation of subproblem (7.4b).

You can assume that ElementMatrix local has been initialized and set to zero before it is passed to

the method.

HINT: You may in addition use Eigen::Matrix2d for the Jacobian, as it is equipped with the

methods inverse() and determinant().

HINT: A template file is available in the lecture svn repository

assignments codes/assignment9/Problem3

There you will also find a testcall written in main.cc and its output in testcall output.txt

Solution: Applying the transformation techniques learnt in [NPDE, Section 3.7], we get

aij :=

∫

K̃

α(x)gradbj(x) · gradbi(x) dx

=

∫

K̂

((DΦ(x̂))−1
α(Φ(x̂))(DΦ(x̂))−T )grad b̂j · grad b̂i detDΦ(x̂) dx̂.
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Consequently, by using the midpoint quadrature rule, we get

aij ≈ grad b̂j · grad b̂i

1

6

3∑

k=1

((DΦ(m̂k))−1
α(mk)(DΦ(m̂k))−T )

∣∣∣detDΦ(m̂k)
∣∣∣.

See Listing 9.1 for the code.

Listing 9.1: Implementation of assemLocQuadTri()

17 template<c l a s s ElementMatr ix , c l a s s Funct ion>

18 void assemLocQuadTri ( s td : : vector<Coordinate> c o n s t& ver ts ,

19 std : : vector<Coordinate> c o n s t& d ,

20 Funct ion c o n s t & alpha , ElementMatr ix & l o c a l ) {
21 //create jacobian evaluated at midpoints

22 Eigen : : Matr ix3d auxMat ;

23 std : : vector<Eigen : : Matr ix2d> j acob ians ( 3 ) ;

24 Coordinate sumverts ; sumverts = 0 ;

25 f o r ( i n t i =0; i <3; ++ i ) {
26 sumverts += ve r t s [ i ] ;

27 i f ( i <2){
28 j acob ians [ 0 ] . row ( i ) << ve r t s [ 1 ] [ i ]− ve r t s [ 0 ] [ i ] + 2∗ (d [ 0 ] [ i ] −

d [ 1 ] [ i ] − d [ 2 ] [ i ] ) ,

29 ve r t s [ 2 ] [ i ]− ve r t s [ 0 ] [ i ] + 2∗ (d [ 0 ] [ i ] −
d [ 1 ] [ i ] − d [ 2 ] [ i ] ) ;

30 j acob ians [ 1 ] . row ( i ) << ve r t s [ 1 ] [ i ]− ve r t s [ 0 ] [ i ] + 2∗ (d [ 0 ] [ i ] −
d [ 1 ] [ i ] + d [ 2 ] [ i ] ) ,

31 ve r t s [ 2 ] [ i ]− ve r t s [ 0 ] [ i ] ;

32 j acob ians [ 2 ] . row ( i ) << ve r t s [ 1 ] [ i ]− ve r t s [ 0 ] [ i ] ,

33 ve r t s [ 2 ] [ i ]− ve r t s [ 0 ] [ i ] + 2∗ (d [ 0 ] [ i ] +

d [ 1 ] [ i ] − d [ 2 ] [ i ] ) ;

34 }
35 }
36 ///compute barycentric gradients

37 Eigen : : Matr ix<c a l c t ,2 ,3> grads ;

38 grads << −1, 1 , 0 ,

39 −1, 0 , 1 ;

40 // add contributions of each midpoint

41 f o r ( i n t mp=0; mp<3; ++mp) {
42 Eigen : : Matr ix2d invJ = ( jacob ians [mp ] ) . inverse ( ) ;

43 double detJac = ( jacob ians [mp ] ) . determinant ( ) ;

44 Coordinate midpoin t = ( sumverts − ve r t s [mp ] ) ;

45 midpoin t / = 2 ;

46 midpoin t += d [mp ] ;

47 double coe f f = alpha ( midpoin t ) ;

48 f o r ( unsigned i =0; i <3;++ i ) {
49 f o r ( unsigned j =0; j <3;++ j ) {
50 double va l =

51 ( ( invJ ∗ coe f f ∗ i nvJ . t ranspose ( ) ) ∗grads . co l ( j ) ) . t ranspose ( ) ∗grads . co l ( i ) ;

52 l o c a l [ i ] [ j ] += va l ∗detJac / 6 ;
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53 }
54 }

Problem 9.4 Poisson Equation on a Disk

This problem offers a comprehensive treatment of analytical and algorithmic techniques for para-

metric linear finite elements on general hybrid meshes (with straight edges), see, in particular

[NPDE, Section 3.7.2]. It also revisits assembly of Galerkin matrices from element matrices.

We consider the homogeneous Dirichlet problem for the Laplacian ∆:

−∆u = f in Ω, u = 0 on ∂Ω, (9.4.1)

where Ω is the unit disk

Ω :=
{
x ∈ R

2
∣∣ ‖x‖ < 1

}
.

Again, a student does not want to use any finite element library, but prefers to write a code for

this boundary value problem from scratch. Warned by his buddy that polar coordinates and a

finite difference discretization caused terrible difficulties, he opts for a finite element method on

a hybrid mesh comprising quadrilaterals and triangles like that depicted in Figure 9.2: the nodes

of the mesh are the origin and the intersection points of circles with radii j

N
, j = 1, . . . , N , with

rays at angles 2πj
N

, j = 1, . . . , N . He settles for a polygonal approximation of ∂Ω as in Figure 9.2.

23 24

25

2627

28

29 30

0 1

23

4

5 6

7

89

10

11 12

13

1415

16

17 18

19

2021

22

Figure 9.2: Hybrid mesh with piecewise linear approximation of ∂Ω. The red lines are the edges

of the mesh.

On the hybrid mesh the student wants to employ a finite element Galerkin discretization of (9.4.1)

based on continuous trial/test function that are
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a2
j+1

N
a1

m

a4

j

N
a3

m+ 1

Figure 9.3: quadrilateral element

• piecewise linear on the triangles (→ [NPDE, Section 3.3])

• parametrically mapped bilinear functions on the quadrilaterals (→ [NPDE, Section 3.7.2]).

As explained in class, for the quadrilaterals the mapping from the unit square is a bilinear trans-

formation, see [NPDE, Eq. (3.7.16)].

(9.4a) Give the coefficients of the bilinear transformation

ΦK(x̂) =

(
α1 + β1x̂1 + γ1x̂2 + δ1x̂1x̂2

α2 + β2x̂1 + γ2x̂2 + δ2x̂1x̂2

)
, αi, βi, γi, δi ∈ R ,

for the quadrilateral formed by the circles with radii j

N
and j+1

N
, 1 ≤ j < N , and the rays with

angles 2πm
N

and
2π(m+1)

N
, 0 ≤ m < N , see Figure 9.3.

Solution: Let a1, a2, a3 and a4 be the vertices of a quadrilateral bounded by the circles with

radius j/N and (j + 1)/N and the rays with angles 2πm/N and 2π(m + 1)/N as shown in the

figure below.

First, we obtain the (x,y) coordinates of the four vertices by conversion from polar to carthesian

coordinates. The values are shown in the table below.

Point r θ x y

a1
j+1
N

2πm
N

j+1
N

cos 2πm
N

j+1
N

sin 2πm
N

a2
j+1
N

2π(m+1)
N

j+1
N

cos 2π(m+1)
N

j+1
N

sin 2π(m+1)
N

a3
j

N

2π(m+1)
N

j

N
cos 2π(m+1)

N

j

N
sin 2π(m+1)

N

a4
j

N
2πm
N

j

N
cos 2πm

N

j

N
sin 2πm

N

Next, we find the coefficients α, β, γ, δ ∈ R
2 as follows:





α = a1
β = a2 − a1
γ = a4 − a1

δ = a4 − a3 − a2 − a1

Then the bilinear form we are looking for is Φ : [0, 1]2 → K,

Φ(x̂) =

(
α1 + β1x̂1 + γ1x̂2 + δ1x̂1x̂2

α2 + β2x̂1 + γ2x̂2 + δ2x̂1x̂2

)
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(9.4b) Compute the Jacobian of the bilinear transformation from the subproblem (9.4a) and its

determinant. Both are functions on the unit square, see [NPDE, Ex. 3.7.27].

Solution: The Jacobian is

DΦ(x̂) =

(
β1 + δ1x̂2 γ1 + δ1x̂1

β2 + δ2x̂2 γ2 + δ2x̂1

)

and its determinant is

|DΦ(x̂)| = β1γ2 − β2γ1 + (β1δ2 − β2δ1)x̂1 + (δ1γ2 − δ2γ1)x̂2

(9.4c) For the computation of the element (load) vectors the student chooses a simple one-

point quadrature formula based on the center of gravity (of a triangle or the unit square, respec-

tively). Based on this choice compute the element (load) vector for the general quadrilateral from

subproblem (9.4a).

Solution: The quadrature point c = (cx, cy) is the center of gravity of the element, taken as the

arithmetic mean of the cartesian coordinates of the element. Next, we compute the area of the

element using the determinant formula:

|K| =
1

2

∣∣∣∣∣∣

1 1 1
x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣

for a triangle element and

|K| =
1

2

∣∣∣∣∣∣

1 1 1
x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣
+

1

2

∣∣∣∣∣∣

1 1 1
x1 x3 x4

y1 y3 y4

∣∣∣∣∣∣

for a quadrilateral element (e.g., the sum of the areas of two triangles). Finally, we use the one-

point quadrature formula: ∫

K

fbjN dx ≈
|K|

k
f(xc, yc)

with k = 3 for a triangle element and k = 4 for a quadrilateral element.

(9.4d) The same one-point quadrature as in subproblem (9.4c) is used for the evaluation of

the element (stiffness) matrices. Compute the element matrix for the quadrilateral considered in

subproblem (9.4a).

Solution: We compute the stiffness matrix via the pullback function Φ defined at the first sub-

point. Using the relation from [NPDE, Eq. (3.7.25)], we have

(AK)ij =

∫

[0,1]2
grad(̂bj)

(
(DΦ)⊤DΦ

)−1(
grad(̂bi)

)⊤
| detDΦ| dx̂

which we evaluate using a one-point quadrature formula, at the center point x̂c = (0.5, 0.5).

Besides the values of DΦ and detDΦ at x̂c we also need the grad(̂bj)(x̂c), j ∈ {1, 2, 3, 4} for

the local shape functions: b̂1(x̂) = (1 − x̂1)(1 − x̂2), b̂
2(x̂) = x̂1(1 − x̂2), b̂

3(x̂) = x̂1x̂2 and

b̂4(x̂) = (1− x̂1)x̂2.
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(9.4e) What is the dimension of the finite element space V0,N ⊂ H1
0 (Ω)?

Solution: The dimension of the finite element space is: N(N − 1) + 1.

(9.4f) Given the mesh in Figure 9.2 with the finite element space already described, sketch the

structure of the Galerkin matrix A. For this, number the nodes counterclockwise from the inner

part of the mesh to the exterior as indicated in the figure. Do you observe any pattern?

Solution: The innest ring, conformed by the node 0, just interacts with itself and with the next

ring (nodes 1 to 6). The remaining rings interact with the previous ring, with themselves and with

the next ring. Moreover, each node interacts with 3 consecutive nodes at each level. This fact

combined with our numbering gives rise to the following blockmatrices:

B =




× × 0 0 0 ×
× × × 0 0 0
0 × × × 0 0
0 0 × × × 0
0 0 0 × × ×
× 0 0 0 × ×




Consequently, the structure of our Galerkin matrix will be:

0 1 · · · 6 7 · · · 12 13 · · · 18 19 · · · 24 25 · · · 30 31 · · · 36






0 × × · · · × 0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0

1 ×

B B 0 0 0 0...
...

6 ×
7 0

B B B 0 0 0...
...

12 0

13 0

0 B B B 0 0...
...

18 0

19 0

0 0 B B B 0...
...

24 0

25 0

0 0 0 B B B...
...

30 0

31 0

0 0 0 0 B B...
...

36 0

Published on 22.04.2015.

To be submitted on 29.04.2015.

Problem Sheet 9 Page 11 Problem 9.4



References

[NPDE] Lecture Slides for the course “Numerical Methods for Partial Differential Equa-

tions”.SVN revision # 79326.

[NCSE] Lecture Slides for the course “Numerical Methods for CSE”.

Last modified on August 3, 2015

Problem Sheet 9 Page 12 References

http://www.sam.math.ethz.ch/~hiptmair/tmp/NPDE/NPDE15.pdf
http://www.sam.math.ethz.ch/~hiptmair/tmp/NumCSE11_ext.pdf

	Problem Sheet 9
	9.1 Midpoint Quadrature on Triangles (Core)
	9.2 The Duffy Trick
	9.3 Parametric Finite Elements on Curved Triangles (Core)
	9.4 Poisson Equation on a Disk


