Don't panic! Good luck!


## Problem 1 Discretization error for linear and quadratic Lagrangian finite elements [5 points]

On a polygonal, bounded domain $\Omega \subset \mathbb{R}^{2}$ we consider the finite element Galerkin discretization of the boundary value problem

$$
\begin{equation*}
-\Delta u+u=f \in L^{2}(\Omega) \quad \text { in } \Omega \subset \mathbb{R}^{2}, \quad u=0 \quad \text { on } \partial \Omega . \tag{1.1}
\end{equation*}
$$

by means of piecewise linear Lagrangian finite elements (FE space $\mathcal{S}_{1,0}^{0}(\mathcal{M})$ ) and piecewise quadratic Lagrangian finite elements ( FE space $\mathcal{S}_{2,0}^{0}(\mathcal{M})$ ) on a triangular mesh $\mathcal{M}$. The respective finite element solutions will be denoted by $u_{L} \in \mathcal{S}_{1,0}^{0}(\mathcal{M})$ and $u_{Q} \in \mathcal{S}_{2,0}^{0}(\mathcal{M})$.
(1a) [3 points] Show that

$$
\begin{equation*}
\left\|u-u_{Q}\right\|_{\mathrm{a}}^{2}+\left\|u_{Q}-u_{L}\right\|_{\mathrm{a}}^{2}=\left\|u-u_{L}\right\|_{\mathrm{a}}^{2}, \tag{1.2}
\end{equation*}
$$

$u \in H_{0}^{1}(\Omega)$ is the exact solution and $\|\cdot\|_{a}$ stands for the energy norm induced by the variational formulation of (1.1).
(1b)
[2 points] Give an argument, why

$$
\begin{equation*}
\left\|u-u_{Q}\right\|_{a} \leq\left\|u-u_{L}\right\|_{a} \tag{1.3}
\end{equation*}
$$

holds true.
$\square$

## Problem 2 Convergence of finite element solutions [6 points]

On the "L-shaped" domain $\Omega=]-1,1\left[{ }^{2} \backslash[-1,0]^{2}\right.$ we consider the second-order elliptic boundary value problem

$$
\begin{equation*}
-\Delta u=f \quad \text { in } \Omega, \quad u=g \quad \text { on } \partial \Omega . \tag{2.1}
\end{equation*}
$$

In a code a Galerkin discretization by means of piecewise linear and quadratic Lagrangian finite elements is employed.
(2a) [3 points] Consider the case when $f$ and $g$ are set to produce the exact solution $u(\boldsymbol{x})=$ $\cos \left(\pi x_{1}\right) \cos \left(\pi x_{2}\right)$.
Describe in qualitative and quantitative terms the convergence of the finite element solutions in the energy norm on a sequence of triangular meshes created by successive regular refinement of some initial mesh.
$\square$
(2b) [3 points] Somebody else uses the code on the boundary value problem (2.1) for $f \equiv 1$ and $g=0$ and he observes the errors in energy norm displayed in Figure 2.1 for the finite element solutions on a sequence of triangular meshes created by successive regular refinement of some initial mesh.

Explain, why the answer to sub-problem (2a) completely fails to match the observations in this case.


Figure 2.1: Energy norm of discretization errors for both linear and quadratic Lagrangian finite elements.

## Problem 3 Linear output functionals [6 points]

Which of the following output functionals are linear and well defined on $L^{2}(\Omega)$ and $H^{1}(\Omega)$, respectively, for $\Omega=\left\{x \in \mathbb{R}^{2}:\|x\|<1\right\}$ ? Answer by entering "YES" or "NO" in the blank fields of the table.

| functional | linear? | defined on $L^{2}(\Omega) ?$ | defined on $H^{1}(\Omega) ?$ |
| :---: | :--- | :--- | :--- |
| $J(v)=\int_{\Omega} \mathbf{c} \cdot \operatorname{grad} v(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}, \mathbf{c} \in \mathbb{R}^{2}$ |  |  |  |
| $J(v):=\int_{\partial \Omega} \operatorname{grad} v(\boldsymbol{x}) \cdot \boldsymbol{n}(\boldsymbol{x}) \mathrm{d} S(\boldsymbol{x})$ |  |  |  |
| $J(v):=\left\|v\left(\boldsymbol{x}_{0}\right)\right\|, \boldsymbol{x}_{0} \in \Omega$ |  |  |  |
| $J(v):=\int_{\Omega} \mathbf{c} v\left(\frac{\boldsymbol{x}}{\\|\boldsymbol{x}\\|}\right) \mathrm{d} \boldsymbol{x}, \mathbf{c} \in \mathbb{R}^{2}$ |  |  |  |

## Problem 4 Parabolic evolution [5 points]

For testing purposes one considers the parabolic evolution problem

$$
\begin{gather*}
\left.\frac{\partial u}{\partial t}-\Delta u=0 \quad \text { in } \Omega \times\right] 0, T[ \\
u=0 \quad \text { on } \partial \Omega \times] 0, T[  \tag{4.1}\\
u(\boldsymbol{x}, 0)=u_{0}(\boldsymbol{x}) \quad \text { for } \boldsymbol{x} \in \Omega
\end{gather*}
$$

on the unit square $\Omega=] 0,1\left[{ }^{2}\right.$. Choosing $u_{0}(\boldsymbol{x})=\sin \left(\pi x_{1}\right) \sin \left(\pi x_{2}\right)$ one obtains $u(\boldsymbol{x}, t)=$ $\exp \left(-\pi^{2} t\right) u_{0}(\boldsymbol{x})$ as exact solution.
A method of lines approach is employed: Discretization in space relies on quadratic Lagrangian finite elements, whereas discretization in time is done using an L-stable SDIRK implicit RungeKutta scheme of order 2 with uniform timestep $\tau>0$.
(4a) [3 points] For fixed timestep $\tau$ we examine the $L^{2}(\Omega)$-norm of the discretization error at final time $T=\frac{1}{2}$ for an (infinite) sequence of meshes created by uniform regular refinement. Indicate the qualitative dependence of this error norm on the mesh-width $h$ by drawing a suitable error curve in Figure 4.1.

Hint: Assume an error norm of 1 on the coarsest mesh.
(4b) [2 points] Now we track the error norm $E\left(t_{j}\right):=\left\|u\left(t_{j}\right)-u_{N}\left(t_{j}\right)\right\|_{L^{2}(\Omega)}$ as a function of $t_{j}=j \tau, j \in \mathbb{N}$, for fixed finite element mesh and fixed timestep $\tau$. What can we expect? Sketch $E$ in Figure 4.2, assuming $E(0)=0.2$.


Figure 4.1: Empty double logarithmic coordinate system, mesh-width $h$ versus $\left\|u(T)-u_{N}(T)\right\|_{L^{2}(\Omega)}, T>0$ fixed.


Figure 4.2: Empty linear coordinate system discrete times $t_{1}, t_{2}, \ldots t_{j}, \ldots$ vs. $E$. Timestep $\tau$ and mesh fixed.

## Problem 5 Singular perturbations [3 points]

Explain the concept of singular perturbation of a boundary value problem for the BVP

$$
\begin{equation*}
-\epsilon \Delta u+\mathbf{v} \cdot \operatorname{grad} u=0 \quad \text { in } \Omega, \quad u=g \quad \text { on } \partial \Omega, \tag{5.1}
\end{equation*}
$$

as $\epsilon \rightarrow 0$. Here $\Omega$ is a domain in $\mathbb{R}^{2}$ and $\mathbf{v} \in \mathbb{R}^{2} \backslash\{0\}$.
$\square$

