
Course 401-0674-00L: Numerical Methods for
Partial Differential Equations

Examination, August 13, 2010

Prof. Ralf Hiptmair Dont’t panic !
Good luck !

Duration of examination: 180 minutes

The total number of points is 200. Please pay attention to thenumber of points awarded for
each (sub-)problem. It is roughly correlated with the amount of information your answer
should contain. For additional information see the examination instruction sheet.

Problem 1. (Convergence of finite element solutions (15 points))

A student is testing his implementation of a finite element method. On the square domainΩ =
]0, 1[2 he considers the 2nd-order elliptic boundary value problem

−∆u = 1 in Ω, u =
1

4

(
1 − ‖x‖2

)
on∂Ω . (1)

He computes an approximate solutionsuN ∈ S0
p (M) by means of a finite element Galerkin

method using linear (p = 1) and quadratic (p = 2) Lagrangian finite elements on a sequence of
triangular meshesM.

The following table lists the measuredH1(Ω)-seminorm of the discretization error as a function
of the meshwidthhM.

hM 0.70 0.35 0.17 0.088 0.044 0.022 0.011

S0
1 (M) 0.10 0.051 0.025 0.012 0.0064 0.0032 0.0008

S0
2 (M) 1.75 · 10−16 1.24 · 10−15 5.71 · 10−15 2.29 · 10−14 8.91 · 10−14 3.53 · 10−13 1.41 · 10−12

The data of this table are available in the MATLAB data filecvgtab.mat.

(1a) (3 points)

Show thatu(x) = 1
4
(1 − ‖x‖2) is the exact solution of (1)

(1b) (8 points)

What kind of convergence (qualitative and quantitative) forlinear Lagragian finite elements can
be inferred from the error table?
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(1c) (4 points)

Explain the striking difference between the behavior of thediscretization error for linear and
quadratic Lagrangian finite elements.

Problem 2. (Lax-Wendroff scheme (65 points))

The Cauchy problem for a generic scalar conservation law seeks u : R × [0, T ] 7→ R, which
solves

∂u

∂t
+

∂

∂x
f(u) = 0 in R × [0, T ] ,

u(x, 0) = u0(x) , x ∈ R .

(2)

We compute approximationsµ(k)
j ≈ u(jh, kτ) on an equidistant space-time mesh with spatial

meshwidthh > 0 and uniform timestepτ > 0 by means of the so-called Lax-Wendroff scheme

µ
(k)
j = µ

(k−1)
j − 1

2
γ

(
f(µ

(k−1)
j+1 ) − f(µ

(k−1)
j−1 )

)
+ 1

2
γ2

(
f ′(1

2
(µ

(k−1)
j+1 + µ

(k−1)
j ))2(µ

(k−1)
j+1 − µ

(k−1)
j )−

f ′(1
2
(µ

(k−1)
j + µ

(k−1)
j−1 ))2(µ

(k−1)
j − µ

(k−1)
j−1 )

)
, γ :=

τ

h
, (3)

with initial valuesµ(0)
j := u0(jh), j ∈ Z.

In this problem we consider the special flux functionf(u) = exp(u).

(2a) (10 points) Assume that there areA,B ∈ R, A < B, such that

u0(x) = A for x ≤ 0 , A ≤ u0(x) ≤ B for 0 < x < 1 , u0(x) = B for x ≥ 1 . (4)

Sketch the maximal possible set{(x, t) ∈ R × [0, 1] : B < u(x, t) < A} in thex − t-plane.

(2b) (20 points) Implement a MATLAB function

muend = lwsol(u0,T,M)

that uses the Lax-Wendroff scheme (3) to solve (2) for f(u) = exp(u) over the time period[0, T ]
under the assumption (4) with 0 ≤ A < B ≤ 1. Use spatial meshwidthh = eτ , e := exp(1).

The arguments have the following meaning:

u0 : handle to the functionu0 : R 7→ R,
T : final timeT > 0,
M : number of timesteps.

In muend the function is to return the approximationsµ
(M)
j for j = ⌊−3T

h
⌋, . . . , ⌈3T+1

h
⌉. Here⌊·⌋

and⌈·⌉ give the integer precursor and successor, respectively, ofa real number.

(2c) (7 points) Use your implementation oflwsol to solve the Riemann problem in the MAT-
LAB script prob2c.m.

∂u

∂t
+

∂

∂x
exp(u) = 0 in R × [0, 1] , u(x, 0) =

{
0 for x < 0 ,

1 for x ≥ 0 .
(5)
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Also compute the error norm

err(M) = h
∑

j∈Z

|µM
j − u(jh, 1)| (6)

for M = 20, 40, 80, 160, 320, 640, create a log-log plot oferr(M) and determine the rate of
convergence.

Hint: The analytic solution is a rarefaction wave given by

u(x, t) =






0 for x < t ,

log(x
t
) for t < x < et ,

1 for x > et .

(7)

If you do not trust your implementation oflwsol you may resort to the reference implemeneta-
tion lwsol Ref in lwsol Ref.p.

(2d) (8 points) Repeat the evaluations of the previous sub-problem for theC1 initial data

u0(x) =






sin2(π
2
x) for 0 ≤ x ≤ 1 ,

0 x < 0,

1 x > 1.

(8)

Implement this inprob2d.m.

Hint: The “exact” solutionx 7→ u(x, 1) is provided by the MATLAB functionu = exactsol(x)
that expects a vectorx of locations and the returns very accurate approximations to the point val-
ues of the exact solution there.

(2e) (10 points) Derive the Godunov numerical flux function for (2) and the flux function
f(u) = exp(u).

(2f) (10 points) Implement a MATLAB-function

muend = godsol(u0,T,M)

that does the simulation requested in sub-problem(2b) based on a conservative finite volume
method and Godunov numerical flux with explicit Euler timestepping.

Problem 3. (Parabolic evolution problem (120 points))

On the spatial domainΩ =]0, 1[2 we consider the parabolic initial boundary value problem

∂u

∂t
− ∆u = f onΩ×]0, T [ ,

u = 0 on∂Ω×]0, T [ ,

u(·, 0) = u0 in Ω ,

(9)

where the initial datau0 and the source functionf = f(x, t) are given.

For the spatial finite element Galerkin discretization of (9) we employ parametric bilinear La-
grangian finite elements on generalquadrilateralmeshes like the one depicted in Figure1.
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Figure 1: Example of a general quadrilateral mesh

(3a) (5 points) Derive the spatial variational formulation of the parabolic evolution problem (9).

(3b) (3 points) Give the formula of a bilinear transformationΦK : K̂ 7→ K that takes the
unit squareK̂ =]0, 1[2 to a general quadrilateral with the verticesa

1,a2,a3,a4 ∈ R
2 (numbered

counterclockwise, see Figure2).

mapping
bilinear

x̂1

x̂2

â
1

â
2

â
3

â
4

a
1

a
2

a
3

a
4

ΦK

unit square general quadrilateral

Figure 2: Bilinear mapping taking the unit square to a generalquadrilateral

(3c) (5 points) We writêbi, i = 1, . . . , 4, for the bilinear local shape functions on̂K and
bi
K := (Φ−1

K )∗b̂i for those on the generic quadrilateralK. Show that

grad
x

bi
K(x) = M(Φ−1

K (x))−T gradbx b̂i(Φ−1
K (x)) , (10)

with aR
2,2-valued function

M(x̂) :=
(
x̂2(a

1 − a
2 + a

3 − a
4) + (a2 − a

1), x̂1(a
1 − a

2 + a
3 − a

4) + (a4 − a
1)

)
.

(11)

(3d) (15 points) Complete the implementation of the LehrFEM-MATLAB function

function Aloc =
STIMA Lapl BFE(Vertices,ElemInfo,QuadRule,varargin)
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that computes the element matrix corresponding to the bilinear forma∆(u, v) :=
∫

Ω
grad u ·

grad v dx for parametric bilinear Lagrangian finite elements on a general quadrilateral based on
a local quadrature rule.

Here, the2 × 4 matrixVertices passes the coordinates ofa
1,a2,a3,a4 andQuadRule is a

structure storing the weights and nodes of a quadrature ruleon K̂ on the fieldsQuadRule.w
andQuadRule.x, respectively. The other arguments need not be used.

Hint: Supplied is the functiongrad shap BFE that takes a 2-vector̂x ∈ K̂ of coordinates and
returns the gradientsgradbx b̂i(x̂), i = 1, . . . , 4, in one column vector with the components of the
i-th gradient stored in coefficients2i − 1 and2i.

Hint: A reference implementation is supplied through the function STIMA Lapl BFE Ref in
the fileSTIMA Lapl BFE Ref.p, but the source code is not accessible.

(3e) (12 points) Complete the implementation of the LehrFEM-MATLAB function

function floc = Load BFE(Vertices,f,QuadRule),

that returns the element load vector corresponding to the linear formℓ(v) :=
∫
Ω

fv dx for para-
metric bilinear Lagrangian finite elements on a general quadrilateral based on a local quadrature
ruleQuadRule. The argumentsVertices andQuadRulematch those ofSTIMA Lapl BFE,
whereasf contains a handle of type@(x) to the functionf : Ω 7→ R.

Hint: You may use the supplied functionshap BFE that takes am × 2-matrix of coordinates
of points x̂j ∈ K̂, j = 1, . . . ,m, and returns anm × 4-matrix of valueŝbi(x̂j), i = 1, . . . , 4,
j = 1, . . . ,m.

Hint: A reference implementation is supplied through the function Load BFE Ref in the file
Load BFE Ref.p, but the source code is not accessible.

(3f) (15 points) Aconvexquadrilateral with verticesa1,a2,a3,a4 ∈ R
2 (numbered counter-

clockwise) can be split into two triangles with verticesa
1,a2,a3 anda

1,a3,a4. Thepiecewise
linear “tent functions” associated with the vertices of these triangles can serve as local shape
functions on the quadrilateral.

Relying on the supplied LehrFEM-MATLAB function

Aloc = STIMA Lapl LFE(Vertices,varargin),

which computes the element stiffness matrix for−∆ and triangular linear Lagrangian finite ele-
ments, complete the LehrFEM-MATLAB function

function Aloc = STIMA Lapl BFEsplit(Vertices,varargin)

that computes the element matrix corresponding to the bilinear forma∆(u, v) :=
∫

Ω
grad u ·

grad v dx based on the piecewise linear local shape function described above.

Here, the2 × 4 matrixVertices passes the coordinates ofa
1,a2,a3,a4, whereas the variable

varargin can be ignored.

Hint: A reference implementation is supplied through the functionSTIMA Lapl BFEsplit Ref
in the fileSTIMA Lapl BFEsplit Ref.p, but the source code is not accessible.
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Figure 3: A split quadrilateral.

(3g) (5 points) Calculate a tight bound for the number of non-zero entries of the stiffness matrix
for −∆ (with homogeneous Dirichlet boundary conditions) discretized by means of paremetric
bilinear Lagrangian finite elements on a general quadrilateral mesh. The bound should be stated
in terms of the numbers of cells, (interior) edges, and (interior) vertices of the mesh.

(3h) (15 points) Complete the missing lines in the routine

err = L2Err BFE(Mesh,u,QuadRule,FHandle,varargin)

that computes an approximation of‖uN − u‖L2(Ω) for uN ∈ S0
1,0(M) andu ∈ C0(Ω) by means

of the local quadrature rule passed in the argumentQuadRule (see sub-problem(3d) for further
explanations). The argumentu contains the coefficients of the nodal basis representationof uN ∈
S0

1,0(M), M a general quadrilateral mesh.

Hint: Further information can be found in the comments inside the function template.

Hint: A reference implementation is supplied through the function L2Err BFE Ref in the file
L2Err BFE Ref.p, but the source code is not accessible.

(3i) (5 points) With stiffness matrixA and mass matrixM we can formally write the spatially
semi-discrete version of (9) as

M
d~µ

dt
(t) − A~µ(t) = ~ϕ(t) , ~µ(0) = ~µ0 . (12)

State a fully discrete version that uses implicit Euler timestepping with uniform timestepτ > 0.

(3j) (10 points) Explain why it is not advisable to useexplicitRunge-Kutta single-step timestep-
ping methods for (12) with a spatial discretization with piecewise linear Langrangian finite ele-
ments.
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(3k) (10 points) Implement the timestepping scheme from sub-problem(3i) in

u = Parb Evl BFE(Mesh,u0,FHandle,T,Nsteps),

whereMesh is a LehrFEM mesh data structure for a quadrilateral mesh,u0 the coefficient vector
for the intial data,FHandle of type@(x,t) passes the time-dependent right hand side,T gives
the final time, andNsteps the number of timesteps. The function is to return the finite element
solution at final time (encoded by its basis coefficients, of course).

Parts of the code that compute the matricesA andM are already supplied. The functionassemLoad BFE
can be used to obtain~ϕ(t).

Hint: Further information can be found in the comments inside the function template. You may
use the reference implementations of the MATLAB functions from earlier sub-rpoblems, in case
you do not trust your implementations. A reference implementation of the currently requested
function is available throughParb Evl BFE Ref.

(3l) (10 points) Foru0(x) = sin(πx1) sin(πx2), f ≡ 0 we find the exact solution

u(x, t) = e−2π2t sin(πx1) sin(πx2), (x0, x1)
T ∈ Ω =]0, 1[2. (13)

for (9). Extend the MATLAB scriptmain BFE.m to study the convergence (qualitatively and
quantitatively) of thespatialdiscretization on a sequence of regularly refined quadrilateral meshes.
To that end examine the discretization error‖uN(T ) − u(T )‖L2(Ω) for final timeT = 0.1. Choose
the timestep small enough such that the temporal discretization error will never dominate. What
rate of convergence do you observe?

Hint: You may useParb Evl BFE Ref. Look at the code template inmain BFE.m for further
information.

(3m) (10 points) How should the (uniform) timestep for the implicit Euler method be linked to
the meshwidth in order to obtain optimal convergence of‖uN(T ) − u(T )‖L2(Ω) with best possible
efficiency.

Hint: Take into account the convergence of the spatial discretization studied in sub-problem(3l).
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