Course 401-0674-00L: Numerical Methods for

Duration of examination:

Partial Differential Equations

Prof. Ralf Hiptmair

180 minutes

Examination, August 13, 2010

Dont't panic !
Good luck!

The total number of points is 200. Please pay attention tatimeber of points awarded for
each (sub-)problem. It is roughly correlated with the amafrinformation your answey
should contain. For additional information see the exationanstruction sheet.

Problem 1.

(Convergence of finite element solutions (15 pdi))

A student is testing his implementation of a finite elementhod. On the square domaih =
10, 1[* he considers the 2nd-order elliptic boundary value problem

—Au=1

in Q,

1

u=7 (1 |l?)

onosl .

(1)

He computes an approximate solutiomg € Sg(/\/l) by means of a finite element Galerkin
method using lineary(= 1) and quadraticy{ = 2) Lagrangian finite elements on a sequence of
triangular meshea .

The following table lists the measuréff (2)-seminorm of the discretization error as a function
of the meshwidthh ..

[ hm | 070 [ 035 | 017 | 008 | 0044 | 0022 | 0011 |
SM)| 010 0.051 0.025 0.012 0.0064 | 0.0032 | 0.0008
SYM) [ 1.75-10 " [ 1.24-10 ® [ 5.71-10 © [ 2.29-10 * [ 8.91-10 * [ 3.53-10 ® | 1.41-10

The data of this table are available in the MATLAB data Gilegt ab. mat .

(1a) (3 points)
Show thatu(x)

(1b) (8 points)

L(1 — ||lz||*) is the exact solution oflg

What kind of convergence (qualitative and quantitative)lifeear Lagragian finite elements can

be inferred from the error table?



(1c) (4 points)
Explain the striking difference between the behavior of dmretization error for linear and
guadratic Lagrangian finite elements.

Problem 2. (Lax-Wendroff scheme (65 points))

The Cauchy problem for a generic scalar conservation lawsseekR x [0,7] — R, which
solves
%+%f{u) =0 inRx][0,7],

u(z,0) =up(x), zeR.

(2)

We compute approximatiorysg.’“) ~ u(jh,kT) on an equidistant space-time mesh with spatial
meshwidthh > 0 and uniform timestep > 0 by means of the so-called Lax-Wendroff scheme

i = 0y (PG = P 392 (PG + 2 - ) -
PO+ gEDPEED = i) = G
with initial valuesy” == uo(jh), j € Z.
In this problem we consider the special flux functififn) = exp(u).
(2a) (10 points) Assume that there afle B € R, A < B, such that
up(z) = A forx <0, A<uy(x)<B for0<z<1l, wy(zx)=B forz>1. (4)
Sketch the maximal possible gtz t) € R x [0,1] : B < u(x,t) < A} inthex — t-plane.

(2b) (20 points) Implement a MATLAB function
muend = Iwsol (u0, T, M

that uses the Lax-Wendroff schen® {o solve @) for f(u) = exp(u) over the time period), T']
under the assumptiod)with 0 < A < B < 1. Use spatial meshwidth = e7, e := exp(1).

The arguments have the following meaning:

u0 : handle to the functiom; : R — R,
T = finaltimeT >0,
M . number of timesteps.
In nuend the function is to return the approximationS” for j = [ =3Z],... [2+L]. Here| |

and|-] give the integer precursor and successor, respectivedyredl number.

(2c) (7 points) Use your implementation bfvsol to solve the Riemann problem in the MAT-
LAB scriptpr ob2c. m

0 forz<O,

5
1 forxz>0. ®)

——l——mexp( u)=0 InRx][0,1], u(x,())z{



Also compute the error norm
err(M) = hy )" = u(jh, 1) (6)
JEL
for M = 20,40, 80, 160, 320, 640, create a log-log plot oérr(M) and determine the rate of
convergence.

Hint: The analytic solution is a rarefaction wave given by

0 forx <t,
u(z,t) = log(§) fort <z <et, (7)
1 forx > et .

If you do not trust your implementation bfwsol you may resort to the reference implemeneta-
tionl wsol _Ref inl wsol _Ref. p.

(2d) (8 points) Repeat the evaluations of the previous sub-pmolde theC'* initial data

sing(gm) foro<axz<1,

up(z) =< 0 x <0, (8)
1 x> 1.
Implement this inpr ob2d. m

Hint: The “exact” solutionc — u(zx, 1) is provided by the MATLAB functioru = exact sol ( x)
that expects a vector of locations and the returns very accurate approximatiomise point val-
ues of the exact solution there.

(2e) (10 points) Derive the Godunov numerical flux function f@ @nd the flux function

f(u) = exp(u).
(2f) (10 points) Implement a MATLAB-function

muend = godsol (u0, T, M

that does the simulation requested in sub-prob{2b) based on a conservative finite volume
method and Godunov numerical flux with explicit Euler tineggiing.
Problem 3. (Parabolic evolution problem (120 points))

On the spatial domaift =0, 1[*> we consider the parabolic initial boundary value problem

@—Au = f onQx]0,T[,

ot
w = 0 ondx]o,T], (©)
u(-,0) = wy INQ,
where the initial data, and the source functiofi= f(x,t) are given.

For the spatial finite element Galerkin discretization @f e employ parametric bilinear La-
grangian finite elements on genegaladrilateralmeshes like the one depicted in Figdre

3



Figure 1. Example of a general quadrilateral mesh

(3a) (5 points) Derive the spatial variational formulation o gparabolic evolution problendy).

(3b) (3 paints) Give the formula of a bilinear transformatién, : K — K that takes the
unit squarel’ =|0, 1[? to a general quadrilateral with the vertiags a?, a®, a* € R? (numbered
counterclockwise, see Figug.

_unit square general quadrilateral

X2
®
a’ a’
Dx
/\
bilinear
mapping
~1 2
a a
® o — 31

Figure 2: Bilinear mapping taking the unit square to a gerguadrilateral
(3c) (5 points) We writebi, i = 1,...,4, for the bilinear local shape functions dd and
bi. = (®)*b' for those on the generic quadrilatefal Show that
grad, by (z) = M(®' () " grad; b (® () , (10)
with aR?2-valued function

M(z) := (Z2(a' —a® +a’ —a') + (a®* —a'), Ti(a'—a’+a’—a’)+ (a*—a'))

(11)
(3d) (15 points) Complete the implementation of the LehrFEM-MARB_function

function Al oc =
STI MA_Lapl _BFE( Verti ces, El em nf o, QuadRul e, var ar gi n)
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that computes the element matrix corresponding to thedafiforman (u,v) := [,gradu -
grad v dx for parametric bilinear Lagrangian finite elements on a garguadrilateral based on
a local quadrature rule.

Here, the2 x 4 matrix Ver t i ces passes the coordinates@f, a*, a*, a* andQuadRul e is a
structure storing the weights and nodes of a quadratureorul€ on the fieldsQuadRul e. w
andQuadRul e. x, respectively. The other arguments need not be used.

Hint: Supplied is the functiogr ad_shap_BFE that takes a 2-vectaE ¢ K of coordinates and
returns the gradientsrad b'(z), 7 = 1, ..., 4, in one column vector with the components of the
i-th gradient stored in coefficien?s — 1 and2z'.

Hint: A reference implementation is supplied through the fumc&d| MA Lapl BFE_Ref in
the fileSTI MA_Lapl BFE_Ref . p, but the source code is not accessible.

(3e) (12 points) Complete the implementation of the LehrFEM-MAR_function
function floc = Load BFE(Vertices, f, QuadRul e),

that returns the element load vector corresponding to teatiformé(v) := [, fv dx for para-
metric bilinear Lagrangian finite elements on a general glzeral based on a local quadrature
ruleQuadRul e. The argument¥er t i ces andQuadRul e match those o8TI MA_Lapl _BFE,
wheread contains a handle of typ@ x) to the functionf : 2 — R.

Hint: You may use the supplled functimhap BFE that takes an x 2-matrix of coordinates
of pointsz; € K,j =1,...,m, and returns am x 4-matrix of valuesbl(:cj) i=1,....4,

7=1...,m

Hint: A reference implementation is supplied through the fumctioad BFE_Ref in the file
Load _BFE_Ref . p, but the source code is not accessible.

(3f) (15 points) Aconvexquadrilateral with verticea', a?, a®,a* € R? (numbered counter-
clockwise) can be split into two triangles with verticgs a?, a® anda', a®, a*. Thepiecewise
linear “tent functions” associated with the vertices of thesengias can serve as local shape
functions on the quadrilateral.

Relying on the supplied LehrFEM-MATLAB function
Al oc = STI MA Lapl LFE(Vertices, varargin),

which computes the element stiffness matrix fai\ and triangular linear Lagrangian finite ele-
ments, complete the LehrFEM-MATLAB function

function Aloc = STIMA Lapl BFEsplit(Vertices, varargin)
that computes the element matrix corresponding to thedalifiorman (u,v) == [, gradu -

grad v dx based on the piecewise linear local shape function destabeve.

Here, the2 x 4 matrix Ver t i ces passes the coordinates®f, a?, a?, a*, whereas the variable
var ar gi n can be ignored.

Hint: A reference implementation is supplied through the fumc8dl MA Lapl BFEspl i t _Ref
in the fileSTI MA_Lapl _BFEspl i t _Ref . p, but the source code is not accessible.
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Figure 3: A split quadrilateral.

(3g) (5 points) Calculate a tight bound for the number of non-zetdes of the stiffness matrix
for —A (with homogeneous Dirichlet boundary conditions) diseest by means of paremetric
bilinear Lagrangian finite elements on a general quadrdhteesh. The bound should be stated
in terms of the numbers of cells, (interior) edges, and fiotgvertices of the mesh.

(3h) (15 points) Complete the missing lines in the routine
err = L2Err BFE(Mesh, u, QuadRul e, FHandl e, var ar gi n)

that computes an approximation pfy — ul| ;»q, for uy € 87(M) andu € C°(Q2) by means
of the local quadrature rule passed in the argun@erdRul e (see sub-probler(8d)for further
explanations). The argumemicontains the coefficients of the nodal basis representafiog €
S (M), M a general quadrilateral mesh.

Hint: Further information can be found in the comments inside tinetion template.
Hint: A reference implementation is supplied through the fumcti@Er r BFE_Ref in the file
L2Er r BFE_Ref . p, but the source code is not accessible.

(31) (5 points) With stiffness matriXA and mass matridI we can formally write the spatially
semi-discrete version 09) as

dii
dt

State a fully discrete version that uses implicit Euler ste@ping with uniform timestep > 0.

ME ()~ Afi(t) = @(t) . (0) = iy (12)

(3)) (10 points) Explain why it is not advisable to useplicit Runge-Kutta single-step timestep-
ping methods for12) with a spatial discretization with piecewise linear Laamggian finite ele-
ments.



(3k) (10 points) Implement the timestepping scheme from subipro(3i) in
u = Parb_Evl BFE(Mesh, u0, FHandl e, T, Nst eps),

whereMesh is a LehrFEM mesh data structure for a quadrilateral me8hihe coefficient vector
for the intial dataFHandl e of type@ x, t ) passes the time-dependent right hand Sidgives
the final time, andNst eps the number of timesteps. The function is to return the fingenent
solution at final time (encoded by its basis coefficients,afrse).

Parts of the code that compute the matridesndM are already supplied. The functiassenioad BFE
can be used to obtaia(t).

Hint: Further information can be found in the comments inside timetion template. You may

use the reference implementations of the MATLAB functiomsf earlier sub-rpoblems, in case
you do not trust your implementations. A reference impletagon of the currently requested
function is available througRar b_Evl _BFE_Ref .

(3l) (10 points) Foru(x) = sin(mz) sin(mzs), f = 0 we find the exact solution
u(zx,t) = e 27" sin(rxy) sin(ras),  (wo,21)" € Q =)0, 1[%. (13)

for (9). Extend the MATLAB scriptmai n_BFE. mto study the convergence (qualitatively and
guantitatively) of thespatialdiscretization on a sequence of regularly refined quadrédmeshes.
To that end examine the discretization effok (1) — u(T)| ;2 (q, for final timeT" = 0.1. Choose
the timestep small enough such that the temporal disctietizarror will never dominate. What
rate of convergence do you observe?

Hint: You may usdéPar b_Evl BFE_Ref . Look at the code template mai n_BFE. mfor further
information.

(3m) (10 points) How should the (uniform) timestep for the impliEuler method be linked to
the meshwidth in order to obtain optimal convergencguof(1") — u(T')|[ ;2 (o, With best possible
efficiency

Hint: Take into account the convergence of the spatial discteiizatudied in sub-probler{8l).
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