Course 401-3663-00L: Numerical Methods for
Partial Differential Equations
Examination, Summer 2011

Prof. Ralf Hiptmair Dont't panic !
Good luck'!

Duration of examination: 180 minutes

Problem 1. (L?(92)-orthogonal projection (89 points))

Let Q) C R? be a bounded polygon equipped with a triangular m&shThe L?(Q2)-orthogonal
projectionPy f € SY(M) of a functionf € L?(Q) is defined as the solution of the variational
problem

Pyt € SOM) : /(PNf)(:n)vN(m)dw:/f(w)vN(:n)dzc Yoy € SUM) . (1)

Q

(2a) ([l] 5 points) Show thatl) has a unique solution.

(1b) ([1] 5 points) Show that for any € L?(Q)

If = Pufllpaey = Jnf If = ovlliz) - )

UNES?(M

(1c) ([I] 7 points) Assuming’ € H?*(Q2), give a meaningful, that is, reasonably sharp, bound
for || f — Px [l 12 in terms of the meshwidth and|f| ;> -

Hint: Use @).

(2d) ([I] 7 points) Calculate the exact number of non-zero entries @fGhlerkin matrix in
terms of numbers of cells, edges, and vertices of the megheistandard nodal basis (“tent
function basis”) ofS{(M) is used.

(2e) ([1] 12 points) In a practical implementation of the finite eletmethod the integrals in
(1) are evaluated by means of local quadrature formulas. Oti@oig the midpoint rule

[ s(@)de = 3" [Klgtms) 3)

a KeM

wheremy is the center of gravity of the triangl&, defined asny := 3(aj + a% + a¥), if
al.,a%, a3 are the vertices ok .

Compute the element Galerkin matrix and element right hadteh\sctor corresponding td)( if
the quadrature formul&8] is used together with the standard nodal basis (“tent fondiasis”)
of SY(M).



(2f) (5 points) Show by means of an example that the Galerkin met@rnputed in sub-problem
(1e)may be singular.

Hint: You may study a “mesh” consisting of a single triangle.

(1g) ([1] 10 points) Another option is vertex based quadrature
1
[ s@dz = 3" [KI5(o(al) + glak) + slak) @
o KeM

Write down the linear system of equations arising frdt)) the use of nodal basis functions, and
the quadrature formulay.

Hint: The matrix and vector entries can be expressed in terms o sfigell volumes.

(2h) ([1] 15 points) The filé 2Pr j LFE. mcontains the LehrFEM implementation of a function
[Pf,12err] = 12PrjLFE(nesh,f)

that takes a mesh data structuresh and a handlé to a functionf : Q — R and returns the
basis coefficient vector d? f in Pf and an approximation ofPy f — f]|L2(Q) inl2err. It
relies on the quadrature ruld)(for the evaluation of the right hand side vector.

Use this function to perform a qualitative and quantitasitedy of the convergence PP f — fIILQ(Q)

for f(x) := exp(||z]), 2 =]0, 1[? and a sequence of meshes obtained by five regular refinements
of an intial mesh provided in the fiqr mresh0. mat . To this end extend the MATLAB template
cvgl 2Prj LFE. m

Hint: Regular refinement of a triangular mesh in LehrFEM is achiéyedeans of theef i ne_REG
function. You may use a reference implementatioh2Pr j LFE i n | 2Prj LFE. p.

(1)) (10 points) Now we replacs? (M) in (1) by S (M) = S (M) N Hy(Q2), which yields
a modified discrete variational problem. Cdp¥Pr j LFE. mto | 2Pr j zLFE. mand implement
in it a MATLAB function

[Pf,l2err] = 12PrjzLFE(nesh,f)

that solves the modified problem. The return values cormpmthose of 2Pr | LFE.

Hint: The supplied LehrFEM functioget Bd _DOF( mesh) can be used to tell whether a vertex
of the mesh is located on the boundaxy.

(1)) (10 points) Answer the questions of sub-probldin) for the modified functioh 2Pr | zLFE.
Problem 2. (Least-squares Galerkin discretization (54 poits))

On a bounded polygoft c R? we consider the stationary linear advection problem

v(z)-gradu=f inQ,

5
u=g only, :={xecd: v(z) n <0}, ®)

wherev : Q — RZ?is a given continuous velocity fielg, ¢ C°(Q2) a source term, angde C°(T',)
boundary values for the unknownon the inflow boundary’;,.
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The so-calledeast squares variational formulation of (5) boils down to a linear variational prob-
lem

ueV: alu,w)=Llw) YweV, (6)
with
a(u,w) := (v-gradu,v -gradw);z , L(w):=(v-gradw, f)r: . @)
(2a) ([lI] 5 points) Specify an appropriate function spacdor the least squares variational

formulation.

Hint: The Dirichlet boundary conditions i should be treated assential boundary conditions.

(2b) ([I] 10 points) The least squares variational formulat®ng equivalent to a minimization
problem for a functionall of the form

J(u) = T, )20 - (8)
whereT is an expression involving the functionsand f. What isT'(u, f) in concrete terms.
(2c) ([1] 7 points) Consider the linear 2nd-order scalar elliptic lwarg value problem

—div(A(x)gradu) = f inQ,
u=g only,, 9)
(A(x)gradu) - m=0 ondQ\Ty,,

whereA : Q — R?? is a continuous matrix-valued function with(z) = A(x)” for all x € (.
Which choice ofA makes the bilinear forms of treandard (i.e. not least squares) variational
formulation of @) and the variational problen6) agree?

(2d) ([1] 7 points) The directorfl | BVP_Lehr FEMcontains the complete LehrFEM imple-
mentation of a finite element solver for the boundary valwbjam Q); an approximate solution
is computed by means of a piecewise linear Lagrangian fibgment Galerkin discretization
employing triangular meshes and local vertex based quaérathe main routine is

u = sol veel | bvp(nesh, Ahd, f _.hd, g_hd) ,

wherenesh passes a LehrFEM mesh data structure complete with edgenafion and element
flags, andA_hd, f _hd, g_hd are MATLAB function handles of typ&d x, var ar gi n) that
provide the functionsA, f, andg. The inflow boundary is detected using tirar kFI ags
method, which gives inflow boundary edges an edge flaglgfother boundary edges2 and
interior edged). The values of the finite element solution at the verticesrarerned in the
column vectow. The driver routinesol vebvp_mai n demonstrates the use of this routine.

Copy the filesol veel | bvp. mto sol veadvbvp. mand modify it so that it implements a
LehrFEM routine

u = sol veadvbvp(nesh, v_hd, g_hd) ,

3



that solves}) in the casef = 0 by means of the least squares Galerkin approach based on the
variational formulation §) and piecewise linear Lagrangian finite elements. The aeguivnhd
provides a function handle of tyg@ x, var ar gi n) to the velocity field. This function should
return a column vectar R2. Theg_hd-argument is a function handle of ty@x, var ar gi n)

and passes the real valued functipn

(2e) ([1] 15 points) Implement a MATLAB function
| sgphi = | sqrhs(nesh, v_hd, f _hd)

that computes the right hand side vector for the variatipnablem 6), when piecewise linear
Lagrangian finite elements are employed for its Galerkioréigzation.

As in (2d) the argumentresh contains a LehrFEM mesh data structure complete with edugks a
boundary information. The function handkeshd andf _hd of type @ x) give the velocity field

v and source ternf, see(2d). Vertex based quadrature (trapezoidal rule) is to be uselddal
computations.

(2f) (10 points) Assume = 0. Write a MATLAB function
u = sol veadvl sq(nesh, v, f)

that computes the coefficient vectorof the least squares solution @) (obtained by a linear
Lagrangian finite element Galerkin solution of the relateakt squares variational proble6).(
The arguments have the same meaning 2

Hint. You may copy large parts of your implementationsad| veadvbvp from (2d). Also
usel sqr hs, of which a reference implementation namesigr hsRef is available in the file
| sqr hsRef . p.

Problem 3. (Debugging finite elements (45 points))

Three different LehrFEM routines
[A phi] = assenbl eQFEX(nesh, f _hd), X e {1,2,3}

purport to provide the Galerkin matrix and right hand sidetoefor the finite element discretiza-
tion of the variational problem

we HY(Q): a(u,v):= /gradu -gradvdx = ((v) := /f(a:)v(a:) dz Vv e H'(Q)
0 0 10)

usingquadratic Lagrangian finite elements (spagg(.M)) on a triagular mesiM of some poly-
gonQ) C R%. The argumentesh is is supposed to pass a LehrFEM mesh data structure complete
with edge information and element flags, wherkasd contains a handle to the source function

f oftype@ x, var argi n).

The routines return the Galerkin matrix and right hand sieetar for L0) w.r.t SY(M) based
on standard global shape functions®$f(/M), which are associated with interpolation nodes in
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the vertices and midpoints of edges. The following ordeohglobal shape functions is used:
first we number the basis functions belonging to verticegthas the vertex array in theesh
data structure. Second, the basis functions associatédedges are ordered according to the
numbering of the edges in tmesh. Edges field.

(3a) ([l] 10 points) Write a MATLAB function
lu = interpol at eQFE( nmesh, u)

that accepts a LehrFEM mesh data structaeh and a handle to a real valued function and
returns the basis coeffcients of the nodal interpolant S9(M).

(3b) ([I] 10 points) Determine a sharp boudh ) in the estimate
la(u, u) — a(lau, lou)| < CT(hpy) (11)
whereu : Q — R is supposed to be smooth and the unknown constant0 may depend only

on (2 and the shape regularity measure\dt

Use the following result:

Theorem. Let 2 C R, d = 1,2, 3, be a bounded polygonal/polyhedral domain equipped with a
simplicial mesh M. Then the following interpolation error estimate holds for the nodal interpo-
lation operator I, onto S9(M)

lu — IQUHHl(Q) < Chmm{g’k}_l‘uh{k(g) Vue HY(Q), k=23,
with a constant C' > 0 depending only on k£ and the shape regularity measure p .

(3c) (5 points) Write a MATLAB function
enu = test _assenbl eQFE( nesh, assfn)

that computes (lyu, lyu) for u(x) = exp(||x||*) and the domain triangulated by the mesh de-
scribed by the LehrFEM mesh data structaesh. The argumenassf n passes a handle to an
assembly routine for quadratic Lagrangian finite elemettt thie calling syntax cissenbl e QFEX
introduced above.

Hint. Use the function nt er pol at eQFE developed in(3b). A reference implementation of
this function is supplied asnt er pol at e QFERef in the filei nt er pol at e QFERef . p.

(3d) (10 points) The filesquar enesh. mat contains the LehrFEM mesh data structures for
five increasingly refined triangular meshes(df=]0, 1] in the variablesreshl, ..., neshs.

For each of the assembly routinassenbl eQFEX( nesh, f), X € {1,2,3} plot |a(u,u) —
a(lyu, lu)| for these meshes and the functiof) = exp(||z|*) from (3c) against the mesh-
width A, In a suitable scale.

Hint. Use the functiort est _assenbl eQFE implemented in(3c), for which a reference imple-
mentation is available inest _assenbl eQFE. p. The mesh widtth ,, of a mesh stored in the
LehrFEM data structureesh can be computed by callinget _MeshW dt h( mesh) .
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Hint. You may use
Jul3r ) = 23.7608

for Q =)0, 1]

(3e) (10 points) Which implementations of the assembly routimevenong, which are correct?
Explain your answer.
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