
Course 401-3663-00L: Numerical Methods for
Partial Differential Equations
Examination, Summer 2011

Prof. Ralf Hiptmair Dont’t panic !
Good luck !

Duration of examination: 180 minutes

Problem 1. (L2(Ω)-orthogonal projection (89 points))

Let Ω ⊂ R
2 be a bounded polygon equipped with a triangular meshM. TheL2(Ω)-orthogonal

projectionPNf ∈ S0
1 (M) of a functionf ∈ L2(Ω) is defined as the solution of the variational

problem

PNf ∈ S0
1 (M) :

∫

Ω

(PNf)(x)vN(x) dx =

∫

Ω

f(x)vN(x) dx ∀vN ∈ S0
1 (M) . (1)

(1a) ([I] 5 points) Show that (1) has a unique solution.

(1b) ([I] 5 points) Show that for anyf ∈ L2(Ω)

‖f − PNf‖L2(Ω) = inf
vN∈S0

1
(M)

‖f − vN‖L2(Ω) . (2)

(1c) ([I] 7 points) Assumingf ∈ H2(Ω), give a meaningful, that is, reasonably sharp, bound
for ‖f − PNf‖L2(Ω) in terms of the meshwidthhM and|f |H2(Ω).

Hint: Use (2).

(1d) ([I] 7 points) Calculate the exact number of non-zero entries of the Galerkin matrix in
terms of numbers of cells, edges, and vertices of the mesh, ifthe standard nodal basis (“tent
function basis”) ofS0

1 (M) is used.

(1e) ([I] 12 points) In a practical implementation of the finite element method the integrals in
(1) are evaluated by means of local quadrature formulas. One option is the midpoint rule

∫

Ω

g(x) dx =
∑

K∈M

|K|g(mK) , (3)

wheremK is the center of gravity of the triangleK, defined asmK := 1
3
(a1

K + a
2
K + a

3
K), if

a
1
K ,a2

K ,a3
K are the vertices ofK.

Compute the element Galerkin matrix and element right hand side vector corresponding to (1), if
the quadrature formula (3) is used together with the standard nodal basis (“tent function basis”)
of S0

1 (M).
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(1f) (5 points) Show by means of an example that the Galerkin matrix computed in sub-problem
(1e)may be singular.

Hint: You may study a “mesh” consisting of a single triangle.

(1g) ([I] 10 points) Another option is vertex based quadrature∫

Ω

g(x) dx =
∑

K∈M

|K|
1

3
(g(a1

K) + g(a1
K) + g(a1

K)) . (4)

Write down the linear system of equations arising from (1), the use of nodal basis functions, and
the quadrature formula (4).

Hint: The matrix and vector entries can be expressed in terms of sums of cell volumes.

(1h) ([I] 15 points) The filel2PrjLFE.m contains the LehrFEM implementation of a function

[Pf,l2err] = l2PrjLFE(mesh,f)

that takes a mesh data structuremesh and a handlef to a functionf : Ω 7→ R and returns the
basis coefficient vector ofPNf in Pf and an approximation of‖PNf − f‖L2(Ω) in l2err. It
relies on the quadrature rule (4) for the evaluation of the right hand side vector.

Use this function to perform a qualitative and quantitativestudy of the convergence of‖PNf − f‖L2(Ω)

for f(x) := exp(‖x‖), Ω =]0, 1[2 and a sequence of meshes obtained by five regular refinements
of an intial mesh provided in the filesqrmesh0.mat. To this end extend the MATLAB template
cvgl2PrjLFE.m.

Hint: Regular refinement of a triangular mesh in LehrFEM is achievedby means of therefine REG
function. You may use a reference implementation ofl2PrjLFE in l2PrjLFE.p.

(1i) (10 points) Now we replaceS0
1 (M) in (1) by S0

1,0(M) = S0
1 (M) ∩ H1

0 (Ω), which yields
a modified discrete variational problem. Copyl2PrjLFE.m to l2PrjzLFE.m and implement
in it a MATLAB function

[Pf,l2err] = l2PrjzLFE(mesh,f)

that solves the modified problem. The return values correspond to those ofl2PrjLFE.

Hint: The supplied LehrFEM functionget Bd DOF(mesh) can be used to tell whether a vertex
of the mesh is located on the boundary∂Ω.

(1j) (10 points) Answer the questions of sub-problem(1h)for the modified functionl2PrjzLFE.

Problem 2. (Least-squares Galerkin discretization (54 points))

On a bounded polygonΩ ⊂ R
2 we consider the stationary linear advection problem

v(x) · grad u = f in Ω ,

u = g onΓin := {x ∈ ∂Ω : v(x) · n < 0} ,
(5)

wherev : Ω 7→ R
2 is a given continuous velocity field,f ∈ C0(Ω) a source term, andg ∈ C0(Γin)

boundary values for the unknownu on the inflow boundaryΓin.
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The so-calledleast squares variational formulation of (5) boils down to a linear variational prob-
lem

u ∈ V : a(u,w) = ℓ(w) ∀w ∈ V , (6)

with

a(u,w) := (v · grad u,v · gradw)L2 , ℓ(w) := (v · gradw, f)L2 . (7)

(2a) ([I] 5 points) Specify an appropriate function spaceV for the least squares variational
formulation.

Hint: The Dirichlet boundary conditions in (5) should be treated asessential boundary conditions.

(2b) ([I] 10 points) The least squares variational formulation (6) is equivalent to a minimization
problem for a functionalJ of the form

J(u) := ‖T (u, f)‖2
L2(Ω) , (8)

whereT is an expression involving the functionsu andf . What isT (u, f) in concrete terms.

(2c) ([I] 7 points) Consider the linear 2nd-order scalar elliptic boundary value problem

− div(A(x)grad u) = f in Ω ,

u = g onΓin ,

(A(x)grad u) · n = 0 on∂Ω \ Γin ,

(9)

whereA : Ω 7→ R
2,2 is a continuous matrix-valued function withA(x) = A(x)T for all x ∈ Ω.

Which choice ofA makes the bilinear forms of thestandard (i.e. not least squares) variational
formulation of (9) and the variational problem (6) agree?

(2d) ([I] 7 points) The directoryEllBVP LehrFEM contains the complete LehrFEM imple-
mentation of a finite element solver for the boundary value problem (9); an approximate solution
is computed by means of a piecewise linear Lagrangian finite element Galerkin discretization
employing triangular meshes and local vertex based quadrature. The main routine is

u = solveellbvp(mesh,A hd,f hd,g hd) ,

wheremesh passes a LehrFEM mesh data structure complete with edge information and element
flags, andA hd, f hd, g hd are MATLAB function handles of type@(x,varargin) that
provide the functionsA, f , andg. The inflow boundary is detected using themarkFlags
method, which gives inflow boundary edges an edge flag of-1, other boundary edges-2 and
interior edges0. The values of the finite element solution at the vertices arereturned in the
column vectoru. The driver routinesolvebvp main demonstrates the use of this routine.

Copy the filesolveellbvp.m to solveadvbvp.m and modify it so that it implements a
LehrFEM routine

u = solveadvbvp(mesh,v hd,g hd) ,

3



that solves (5) in the casef ≡ 0 by means of the least squares Galerkin approach based on the
variational formulation (6) and piecewise linear Lagrangian finite elements. The argumentv hd
provides a function handle of type@(x,varargin) to the velocity field. This function should
return a column vector∈ R

2. Theg hd-argument is a function handle of type@(x,varargin)
and passes the real valued functiong.

(2e) ([I] 15 points) Implement a MATLAB function

lsqphi = lsqrhs(mesh,v hd,f hd)

that computes the right hand side vector for the variationalproblem (6), when piecewise linear
Lagrangian finite elements are employed for its Galerkin discretization.

As in (2d) the argumentmesh contains a LehrFEM mesh data structure complete with edges and
boundary information. The function handlesv hd andf hd of type@(x) give the velocity field
v and source termf , see(2d). Vertex based quadrature (trapezoidal rule) is to be used for local
computations.

(2f) (10 points) Assumeg = 0. Write a MATLAB function

u = solveadvlsq(mesh,v,f)

that computes the coefficient vectoru of the least squares solution of (5) obtained by a linear
Lagrangian finite element Galerkin solution of the related least squares variational problem (6).
The arguments have the same meaning as in(2e).

Hint. You may copy large parts of your implementation ofsolveadvbvp from (2d). Also
uselsqrhs, of which a reference implementation namedlsqrhsRef is available in the file
lsqrhsRef.p.

Problem 3. (Debugging finite elements (45 points))

Three different LehrFEM routines

[A,phi] = assembleQFEX(mesh,f hd), X ∈ {1, 2, 3}

purport to provide the Galerkin matrix and right hand side vector for the finite element discretiza-
tion of the variational problem

u ∈ H1(Ω) : a(u, v) :=

∫

Ω

grad u · grad v dx = ℓ(v) :=

∫

Ω

f(x)v(x) dx ∀v ∈ H1(Ω)

(10)

usingquadratic Lagrangian finite elements (spaceS0
2 (M)) on a triagular meshM of some poly-

gonΩ ⊂ R
2. The argumentmesh is is supposed to pass a LehrFEM mesh data structure complete

with edge information and element flags, whereasf hd contains a handle to the source function
f of type@(x,varargin).

The routines return the Galerkin matrix and right hand side vector for (10) w.r.t S0
2 (M) based

on standard global shape functions ofS0
2 (M), which are associated with interpolation nodes in
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the vertices and midpoints of edges. The following orderingof global shape functions is used:
first we number the basis functions belonging to vertices based on the vertex array in themesh
data structure. Second, the basis functions associated with edges are ordered according to the
numbering of the edges in themesh.Edges field.

(3a) ([I] 10 points) Write a MATLAB function

Iu = interpolateQFE(mesh,u)

that accepts a LehrFEM mesh data structuremesh and a handleu to a real valued functionu and
returns the basis coeffcients of the nodal interpolantI2u ∈ S0

2 (M).

(3b) ([I] 10 points) Determine a sharp boundT (hM) in the estimate

|a(u, u) − a(I2u, I2u)| ≤ CT (hM) , (11)

whereu : Ω 7→ R is supposed to be smooth and the unknown constantC > 0 may depend only
onΩ and the shape regularity measure ofM.

Use the following result:

Theorem. Let Ω ⊂ R
d, d = 1, 2, 3, be a bounded polygonal/polyhedral domain equipped with a

simplicial mesh M. Then the following interpolation error estimate holds for the nodal interpo-
lation operator I2 onto S0

2 (M)

‖u − I2u‖H1(Ω) ≤ Chmin{3,k}−1|u|Hk(Ω) ∀u ∈ Hk(Ω) , k = 2, 3 ,

with a constant C > 0 depending only on k and the shape regularity measure ρM.

(3c) (5 points) Write a MATLAB function

enu = test assembleQFE(mesh,assfn)

that computesa(I2u, I2u) for u(x) = exp(‖x‖2) and the domain triangulated by the mesh de-
scribed by the LehrFEM mesh data structuremesh. The argumentassfn passes a handle to an
assembly routine for quadratic Lagrangian finite element with the calling syntax ofassembleQFEX
introduced above.

Hint. Use the functioninterpolateQFE developed in(3b). A reference implementation of
this function is supplied asinterpolateQFERef in the fileinterpolateQFERef.p.

(3d) (10 points) The filesquaremesh.mat contains the LehrFEM mesh data structures for
five increasingly refined triangular meshes ofΩ =]0, 1[2 in the variablesmesh1, . . ., mesh5.
For each of the assembly routinesassembleQFEX(mesh,f), X ∈ {1, 2, 3} plot |a(u, u) −
a(I2u, I2u)| for these meshes and the functionu(x) = exp(‖x‖2) from (3c) against the mesh-
width hM in a suitable scale.

Hint. Use the functiontest assembleQFE implemented in(3c), for which a reference imple-
mentation is available intest assembleQFE.p. The mesh widthhM of a mesh stored in the
LehrFEM data structuremesh can be computed by callingget MeshWidth(mesh).
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Hint. You may use
|u|2H1(Ω) = 23.7608

for Ω =]0, 1[2.

(3e) (10 points) Which implementations of the assembly routine are wrong, which are correct?
Explain your answer.
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