Course 401-0674-00L: Numerical Methods for
Partial Differential Equations
Examination, 06.08.2012

Prof. Ralf Hiptmair Dont't panic !
Good luck'!

Duration of examination: 180 minutes

The total number of points is 350. A full grade can be achiewét significantly fewer
points. Please pay attention to the number of points awafaledach (sub-)task. It i
roughly correlated with the amount of information your aeswhould contain. For add
tional information see the examination instruction sheet.

Uy

Problem 1. Parabolic Evolution Problem [90 points]
Let 2 C R? and the time-dependent functian [0, 7] — H'(Q) solve the following variational
formulation of an evolution problem posed on the space-tigi@der(2 x [0, T:

/ grad u(zx,t) - grad v(x) de + 4 u(z, t)v(x)dS(z) =0 Yve HY(Q),

o dt Jaq (1)
u(x,0) = up(x) Vee.

Note that the bilinear form with the time derivative in frogtan integral over the boundad}.

(1a) (10 points) Show that— |u(-,t)| 1) iS noN-increasing.
Hint: You can take for granted that= %u Is a valid test function for the variational equation in

(1).

(1b) (5 points) The spatial Galerkin semi-disretization of @3ults in an ordinary differential
equation (ODE) of the form

Afil1) + B i) = 0, t) = fio @

What are the formulas for the entries of the matricksand B, if the basis{bf\,}j.v:l, of the
N-dimensional trial and test spate C H' (1) is used?
(1c) (5 points) (Depends on (1b))

Which properties of the matrice4 and B introduced in sub-problem (1b) are ensured regardless
of the choice of the trial and test spakdg and of the basiz{bj\,};v:l?

(1d) (5 points) (Depends on (1b))

Now we focus on the specific choiég, = SY(M), M a triangular mesh af, for the Galerkin
finite element semi-discretization of (1).
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Which difficulty is encountered when trying to solve the réisgl ODE of the form (2) by means
of the explicit Euler timestepping scheme?

(1e) (10 points) SDIRK-2 timestepping is an L-stable implicit t2ge Runge-Kutta method
described by the Butcher scheme

AlXA 0
11-X2 A | A=1-1/2>0 (3)
T—X A

Which equations have to be solved in every timestep, when SERNKth timestepr > 0 is
applied to the ODE (2)?

(2f) (10 points) (Depends on (1b))

Why is SDIRK-2 for (2) feasible for any timestep> 0, any trial and test spadéy # {0} and
any choice of its basis?

HINT: You have to show that the linear systems of equations to lved®o obtain the Runge-
Kutta increments always have a solution.

(1g) (10 points) The LehrFEM MATLAB function
function u = sol veRobi nBVP(nesh, g)

implements a the finite element Galerkin discretizatiorhefthoundary value problem
—Au=0 inQ, u+gradu-n=g onoQ, (4)

using the finite element spa&g = SY(M) on a triangular mesiM, passed asesh argument

to the function. The argumengtis a handle of the typ&) x) providing the continuous function
g : R? — R. The function returns the coefficient vector of the Galesafution with respect to
the standard nodal basis 8f (M).

Reusing parts afol veRobi nBVP develop a LehrFEM MATLAB function
function [A B] = conpGal Mat s(nesh)

that computes the Galerkin matricdsand B introduced in sub-problem (1b) for the trial and
test spacé’y = SP (M) equipped with the standard nodal basis. Hétds a triangular mesh of
() passed as argumemesh (a LehrFEM mesh data type complete with edge information).

(2h) (15 points) (Depends on (1e))
Implement a MATLAB function

nmuf i nal = RadTEvl (u0O, nesh, Tfinal, m

that carries outn uniform timesteps of the L-stable SDIRK-2 implicit 2-stagenga-Kutta
method from (3) of sub-problem (1e). Spatial discretizagbould rely oy = SY(M), M a
triangular mesh of2 passed as argumemesh (a LehrFEM mesh data type complete with edge
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information). The column vectarO supplies the initial valugi, € RY, N := dim Vy, Tf i nal

the end timel". The function should return an approximationufc, t) for t = 7" in the form of

a coefficient (column)V-vectormuf i nal with respect to the nodal basis of the finite element
space.

HINT: A scrambled MATLAB implementation otonpGal Mat s from sub-problem (1g) is
available in the filconpGal Mat s _r ef . p.

(i) (10 points) (Depends on (1h))
Copy your implementation dRadTEvI from sub-problem (1h) to a filBadTEvI Nor m mand
extend it to a function

[ mufinal , HLsem norns] = RadTEvl Nor n{ u0, mesh, Tfinal , m,

which is supposed to return approximationg«wf, t;)| 51 (q), ti := l%, [ =0,...,m, inthe col-
umn vectorHlseni nor s, in addition to an approximate solution at final time. Theuangnts
of the function are explained in sub-problem (1h).

(3j) (10 points) Write a MATLAB script
pl ot ener gyevol uti on

that plots the approximate values fex-, t;)| (o), t := 1L, 1 = 0,...,m versus time.

Use the initial function:(x) = sin(30z;) + sin(30x2), ' = 6, m = 200 andmesh read from
Coord_Circ. dat andEl emCirc. dat .

Choose a suitable plot that reveals a potential exponerd@ydoft — |u(-, )| ().

HINT: A scrambled reference implementatiorRafld TEvI Nor mis supplied in the fil&kadTEvl Nor mr ef . p.

Problem 2. DiscontinuousGalerkin for 1D Conservation Laws [130 points]

We consider the Cauchy problem for the scalar non-liner ggaten law

ou, 9
ot Oz
u(z,0) =ug(x) forxeR,

(W) =0 inRx]0,T| -

with smooth flux functionf : R — R and initial datau, compactly supported if, 1].

Based on the infinite equidistant spatial mesh:= {|x;_1,z;[: z; = hj, j € Z} with mesh-
width A > 0 we define the function space

Vy ={v e L*9): U’[xj,l,xj] € P} (6)

of discontinuougpiecewise linear functions a1 (see figure 1 for an example)
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Figure 1. A sample discontinuous piecewise linear function
(2a) (10 points) Show that a continuous solutioof (5) satisfies
[ Srwentde— [ fute0) T ) dos
Tj—1

Ot 1 dx
Sz, 1)) on(@;—) = f(u(zj-1,)on(zj+) =0 Yoy € Vv, j€Z. (7)
Here, we adopted the notatiefiz,;+) = 51ir(1)a+ v(z; £ 9) in order to resolve the ambiguity of
v(xy).

HINT: Perform the usual steps in the derivation of a spatial tianal formulation: test, integrate,
and integrate by parts (in space).

Next, we aim for a spatial Galerkin semi-discretization 0Of ljased on the spadg,. However,
plugginguy € Vy into (7) instead of: faces the problem of ambiguity ¢fu(z;,t)). Therefore
f(u(z;,t))in (7) is replaced with aumerical fluxt (u(x;—), u(z;+))), which leads to the semi-
discretediscontinuous Galerkin variational problerseekuy : [0, 7] — Vi such that

—00

/°° ag_;v(x,t) vy (z)dz —jzoo/g:jl f(uN(x,t))(Z)—;v(x) dr+

oo

Z Fun(z;—,t),un(x;+,t)(vn(z;—) —on(z;4)) =0 Yoy € Vv . (8)

j=—o0

(2b) (10 points) We knowva priori thatu, is compactly supported if), 1], 0 < ug(z) < 1 and
that|f'(u)| < cforall 0 < u < 1. If T'= 1, which is the smallest truncated spatial mesh

M = {|z;_1, x5 x; = hj, j € {=M,,..., M}} (9)

that allows the spatial discretization of (5) without anymet of the truncation? Find the numbers
M;, M, € Ny.

(2c) (15 points) We denote by the spacé/y restricted to the spatial interval covered by the
truncated spatial mesi from (9). As basis ol/y we choose

{bl_Mlv b2—ML7 bl—Ml"‘l7 b;Ml—H, RN bjl‘/b'_l, bé‘/[r_la bé‘/lra béwr} ) (10)
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bi(z) = bofora, o < v <y by(z) = w— 5z ;) forz, <z <ay,
! 0 elsewhere, 2 0 elsewhere.
(11)

In (8) we expanduy into these basis functions on the truncated méshwith meshwidth#,
testing withvy = b} andvy = b}. This leads to an ordinary differential equation (ODE) foe t
time-dependent coefficient vectgr= fi(t) € RN, N := 2(M; + M, + 1), of the semi-discrete
Galerkin solution, assuming the ordering of basis fundigiven in (10). This ODE takes the
form

d = —
B i+ G(fi) =0, (12)
with a matrix B € RY" and potentially non-linear functio@ : R — R¥,

Write anefficientMATLAB function
function B = conpBmat (h, M, M)
that computes the matriB given M;, M,., andh.

(2d) (20 points) Give a formula for the functiak from (12) in terms of a general flux function
f and two-point numerical flu¥’ = F'(v,w). Simple point evaluations and integralsfoand F'
may be used.

HINT: If it helps, you can use the notatign; andy; » to reference the elements in a vecfor
corresponding to basis functiokisandb’, respectively (e.g. as j were a matrix).

(2e) (10 points) (Depends on (2d))

Now use the two point Gaussian quadrature rule

1

| o065 (o= )+ olh0+ H)) (13)
to approximate all integrals occurring in the expressiondoobtained in the previous sub-
problem. State the resulting formula.
HINT: Do not forget the rescaling of quadrature weights whengu€li3) on an interval of length
h.
(2f) (20 points) (Depends on (2d) and (2e))
Write a MATLAB function

function gvec =  nuvec,f,F, M, M, h)

that evaluates: (i) for a coefficient vectofi passed imuvec, on a finite equidistant mesh
described by, M,., andh. The arguments andF contain function handles to the flux function
f = f(u) and the numerical flu¥' = F'(v, w), respetively. 2-point Gaussian quadrature as in the
previous sub-problem is to be used.

HINT: Use the MATLAB functionr eshape to work with2 x N/2-matrices instead aV x 1-
vectors to make your code easier to read (and write), cf. ititefdr (2d).
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(29) (15 points) We rely on the spatial discontinuous Galerkimisgiscretization on a trun-
cated mesbM described above. Write a MATLAB function

function nufinal = dgcl (nmuO,f,F, T,M,M,h, m

that usesn uniform timesteps of the explicit 2-stage Runge-Kutta tirepging scheme described
by the Butcher scheme

0]0 0
Lo, (14)
0 1

to compute an approximation ofz, T) for final time 7" > 0. mu0 passes the coefficient vector
of an approximation ofiy. All other arguments play the same roles as in sub-probl@esand
(2f).

HINT: Scrambled reference implementationsocafnrpBmat and G are available in the files
conpBmat ref andGr ef .

(2h) (15 points) From now on we consider the traffic flow problemhwyfitu) = «(1 — «) and
use the so-called Engquist-Osher numerical flux

Feo(v,w) 1= H(£(0) + f(w)) = § [ I£1(€)] . (15)
Implement this numerical flux fof (u) = u(1 — ) as a MATLAB function
function F = Feo(v,w) .

(2i) (15 points) Use the fully discrete discontinuous Galerkitvar implemented imigcl from
sub-problem (2h) with Engquist-Osher numerical flux gd) = u(1 — ) to solve the evolution
problem over the time intervél, 1] with initial data

1 for0<z<1
_ = =" 16
o(7) {0 elsewhere (16)

As spatial mesh width usle= 0.05, timestepr = /3, and truncate the mesh te2, 2|.

Plot the spatial cell averages of the obtained approximaifa:(z, 1) versus the spatial variable
Z.

All this should be accomplished by the MATLAB script
sol veTraf fi cFl ow.

HINT: Reference implementations dfcl andFeo are available in the fildgcl _ref . p and
Feo_r ef . p. Take care to gatuO right.
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Problem 3. Basistransformation [50 points]

Let a polygon) C R? be equipped with a triangular megi, whose vertices (séf(M)) and
edges (sef (M)) are numbered fron to V(M) andi€ (M), respectively.

We consider the spadéy = S9(M) of quadratic Lagrangian finite element functions. o A
basis of this space is given by the standard nodal basis.

B, = {by}Ls. N = V(M) +EE(M) |
where we number th®’ (M) vertex associated basis functions beforesthe\) edge associated
basis functions.
Another basis folyy is the hierarchical basis given by

j=1>

b, G =1V(M), .. V(M) +HE(M)

where{b{v}ﬁi1 is the nodal basis for the spas@(M) of linear Lagrangian finite element func-
tions, and?N are the edge associated nodal basis functions fpm

(3a) (20 points) Letgi, be the coefficient vector of a functiany € Vy w.r.t. the nodal basis
B,. Further letgi, be the coefficient vector of theamefunctionuy w.r.t. the hierarchical basis
B,.

For the mesh\ depicted in figure 2 find the matri€ € R""", N = 4 + 5 such tha,, = Sp,,.
Use the numbering of the basis functions as indicated by adderertex numbers in figure 2.

V3 = (O, 1)

€3 €5
€2

€1 €4

v = (—1,0) Vg = (0,0) Vg = (1,0)

Figure 2. Mesh for sub-problem (3a)

(3b) (10 points) Now we consider a general polygarequipped with a triangular mesh.
Retain the notatiot$ from sub-problem (3a) for th& x N matrix that transforms a coefficient
vector w.r.t. toB3, into a coefficient vector w.r.t3;.

Leta(-, -) be a continuous bilinear form ai'(2), A, and A, be the Galerkin matrices afw.r.t.
to B, andB,, respectively. How cam,, be obtained fromA, using the matrixS?
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(3c) (20 points) (Depends softly on (3a))
Given the mesbM in the usual LehrFEM data structumesh, write an efficient function

function nmu_hier = basistrf(Mesh, nu_nod),

wheremu_hi er andrmu_nod correspond to the coefficient vectqig andji,, of auy € Vi with
respect ta3;, andB,, respectively. The argumeMesh passes a LehrFEM mesh data structure
complete with edge information.

HINT: : You need not create the matr#

Problem 4. Maximum principle [80 points]
For a constani < ¢ < 1 we consider the 2nd-order elliptic boundary value problem
—(1=c)Au+cu=f inQ, 17)
u=0 onoQ,
where the source functioh € L?(2) is continuous o and satisfieg (x) < 0 for all = € Q.

(4a) (5 points) State a quadratic minimization problem on a blatdunction space, whose
solution agrees with the solution of (17).
(4b) (15 points) (Depends softly on (4a))
Argue why
maxu(x) =0 (18)

xe)
holds. Why isf < 0 important for your argument?
HINT: Employ a reasoning similar to that in the “visual proof” betmaximum principle in the
lecture, see figure 3.

(4c) (20 points) For the finite element Galerkin discretizatidrn(d¥) on 2 =]0, 1[> we em-
ploy the linear Lagrangian finite element spaig (M) on a “regular” mesh\ as depicted in
figure 4(a).

Write a MATLAB script
nomaxpri nc
that runs a computational counterexample and producesabkioutput in order to demonstrate

that for certain values afthe finite element solutiony € S7 (M) does not satisfy (18).
You may use the LehrFEM function (provided in the flel veBVP. m)

function u = solveBVP(Mc, f)

that computes the coefficient vector of a finite element smiuiy € S7 (M) of the boundary
value problem (17) with respect the nodal basis. It usesgufae mesh” withA/ € N cells in
each direction as displayed in Fig. 4(a). The arguncepésses < [0, 1[, andf a handle of type
@ x1, x2) to the source functiorf.

HINT: Try c = 1.
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Figure 3: A visual cue for the proof requested in sub-proh(ém)

(4d) (20 points) Again, we consider the finite element Galerkstditization of (17) of2 =
10, 1[* based o} j(M).

On a triangular mesiM as in Figure 4(a) with meshwidth := ﬁ M € N, we assemble the
Galerkin matrix using the local numerical quadrature

3
/K¢(a;)da; ~ %|K| > dla;), KeM,
=1

wherea; are the vertices of the triangl€.
Write a MATLAB function

function A = conpA(M c)

that computes the resulting (sparse!) Galerkin matrixyéf standard nodal basis 5f70(/\/l) is
used and the numbering of the basis functions is inducedéliettikographic numbering of the
vertices as given in Figure 4(b).

HINT: Several MATLAB commands come handy for this problem Bedi ags, kr on,
gallery(’triadiag’,...).Ascrambled reference implementatiorcainpA is provided
in the fileconpA.r ef. p.

(4e) (20 points) (Depends softly on (4d))

Show that for the Galerkin finite element discretization Bf)(on2 =0, 1[* introduced in sub-
problem (4d) the propertyy(x) < 0 is satisfied for the finite element solution,fifz) < 0 for
allx € Q.

Problem References

[NPDE] Lecture Slidedor the course “Numerical Methods for Partial Differentiaquations”,
SVN revision # 54024.
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http://www.sam.math.ethz.ch/~hiptmair/tmp/NPDE12_ext.pdf

(a) Regular triangular mesh (b) Lexikographic numbering of interior vertices

Figure 4: Mesh and vertex numbering for Problem 4

Last modified on April 11, 2013

Problem Sheet 0 Page 10



	. Parabolic Evolution Problem 
	(1a)
	(1b)
	(1c)
	(1d)
	(1e)
	(1f)
	(1g)
	(1h)
	(1i)
	(1j)

	. Discontinuous Galerkin for 1D Conservation Laws 
	(2a)
	(2b)
	(2c)
	(2d)
	(2e)
	(2f)
	(2g)
	(2h)
	(2i)

	. Basis transformation 
	(3a)
	(3b)
	(3c)

	. Maximum principle  
	(4a)
	(4b)
	(4c)
	(4d)
	(4e)


