
Course 401-0674-00L: Numerical Methods for
Partial Differential Equations

Examination, 06.08.2012

Prof. Ralf Hiptmair Dont’t panic !
Good luck !

Duration of examination: 180 minutes

The total number of points is 350. A full grade can be achievedwith significantly fewer
points. Please pay attention to the number of points awardedfor each (sub-)task. It is
roughly correlated with the amount of information your answer should contain. For addi-
tional information see the examination instruction sheet.

Problem 1. Parabolic Evolution Problem [90 points]

Let Ω ⊂ R
2 and the time-dependent functionu : [0, T ] → H1(Ω) solve the following variational

formulation of an evolution problem posed on the space-timecylinderΩ × [0, T ]:
∫

Ω

grad u(x, t) · grad v(x) dx +
d

dt

∫

∂Ω

u(x, t)v(x) dS(x) = 0 ∀v ∈ H1(Ω) ,

u(x, 0) = u0(x) ∀x ∈ Ω .

(1)

Note that the bilinear form with the time derivative in frontis an integral over the boundary∂Ω.

(1a) (10 points) Show thatt 7→ |u(·, t)|H1(Ω) is non-increasing.

Hint: You can take for granted thatv = ∂
∂t

u is a valid test function for the variational equation in
(1).

(1b) (5 points) The spatial Galerkin semi-disretization of (1) results in an ordinary differential
equation (ODE) of the form

A~µ(t) + B
d

dt
~µ(t) = 0, ~µ(t) = ~µ0 . (2)

What are the formulas for the entries of the matricesA andB, if the basis
{
bj
N

}N

j=1
, of the

N -dimensional trial and test spaceVN ⊂ H1(Ω) is used?

(1c) (5 points) (Depends on (1b))

Which properties of the matricesA andB introduced in sub-problem (1b) are ensured regardless

of the choice of the trial and test spaceVN and of the basis
{
bj
N

}N

j=1
?

(1d) (5 points) (Depends on (1b))

Now we focus on the specific choiceVN = S0
1 (M), M a triangular mesh ofΩ, for the Galerkin

finite element semi-discretization of (1).
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Which difficulty is encountered when trying to solve the resulting ODE of the form (2) by means
of the explicit Euler timestepping scheme?

(1e) (10 points) SDIRK-2 timestepping is an L-stable implicit 2-stage Runge-Kutta method
described by the Butcher scheme

λ λ 0
1 1 − λ λ

1 − λ λ
, λ := 1 − 1

2

√
2 > 0. (3)

Which equations have to be solved in every timestep, when SDIRK-2 with timestepτ > 0 is
applied to the ODE (2)?

(1f) (10 points) (Depends on (1b))

Why is SDIRK-2 for (2) feasible for any timestepτ > 0, any trial and test spaceVN 6= {0} and
any choice of its basis?

HINT: You have to show that the linear systems of equations to be solved to obtain the Runge-
Kutta increments always have a solution.

(1g) (10 points) The LehrFEM MATLAB function

function u = solveRobinBVP(mesh,g)

implements a the finite element Galerkin discretization of the boundary value problem

−∆u = 0 in Ω , u + gradu · n = g on∂Ω , (4)

using the finite element spaceVN = S0
1 (M) on a triangular meshM, passed asmesh argument

to the function. The argumentg is a handle of the type@(x) providing the continuous function
g : R

2 → R. The function returns the coefficient vector of the Galerkinsolution with respect to
the standard nodal basis ofS0

1 (M).

Reusing parts ofsolveRobinBVP develop a LehrFEM MATLAB function

function [A,B] = compGalMats(mesh)

that computes the Galerkin matricesA andB introduced in sub-problem (1b) for the trial and
test spaceVN = S0

1 (M) equipped with the standard nodal basis. HereM is a triangular mesh of
Ω passed as argumentmesh (a LehrFEM mesh data type complete with edge information).

(1h) (15 points) (Depends on (1e))

Implement a MATLAB function

mufinal = RadTEvl(u0,mesh,Tfinal,m)

that carries outm uniform timesteps of the L-stable SDIRK-2 implicit 2-stage Runge-Kutta
method from (3) of sub-problem (1e). Spatial discretization should rely onVN = S0

1 (M), M a
triangular mesh ofΩ passed as argumentmesh (a LehrFEM mesh data type complete with edge
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information). The column vectoru0 supplies the initial value~µ0 ∈ R
N , N := dim VN , Tfinal

the end timeT . The function should return an approximation ofu(x, t) for t = T in the form of
a coefficient (column)N -vectormufinal with respect to the nodal basis of the finite element
space.

HINT: A scrambled MATLAB implementation ofcompGalMats from sub-problem (1g) is
available in the filecompGalMats ref.p.

(1i) (10 points) (Depends on (1h))

Copy your implementation ofRadTEvl from sub-problem (1h) to a fileRadTEvlNorm.m and
extend it to a function

[mufinal,H1seminorms] = RadTEvlNorm(u0,mesh,Tfinal,m),

which is supposed to return approximations of|u(·, tl)|H1(Ω), tl := l T
m

, l = 0, . . . ,m, in the col-
umn vectorH1seminorms, in addition to an approximate solution at final time. The arguments
of the function are explained in sub-problem (1h).

(1j) (10 points) Write a MATLAB script

plotenergyevolution

that plots the approximate values for|u(·, tl)|H1(Ω), tl := l T
m

, l = 0, . . . ,m versus time.

Use the initial functionu(x) = sin(30x1) + sin(30x2), T = 6, m = 200 andmesh read from
Coord Circ.dat andElem Circ.dat.

Choose a suitable plot that reveals a potential exponential decay oft 7→ |u(·, tl)|H1(Ω).

HINT: A scrambled reference implementation ofRadTEvlNorm is supplied in the fileRadTEvlNorm ref.p.

Problem 2. Discontinuous Galerkin for 1D Conservation Laws [130 points]

We consider the Cauchy problem for the scalar non-liner conservation law

∂u

∂t
+

∂

∂x
f(u) = 0 in R×]0, T [

u(x, 0) = u0(x) for x ∈ R ,
(5)

with smooth flux functionf : R 7→ R and initial datau0 compactly supported in[0, 1].

Based on the infinite equidistant spatial meshM := {]xj−1, xj[: xj = hj, j ∈ Z} with mesh-
width h > 0 we define the function space

VN = {v ∈ L2(Ω) : v
∣∣
[xj−1,xj ]

∈ P1} (6)

of discontinuouspiecewise linear functions onM (see figure 1 for an example)
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Figure 1: A sample discontinuous piecewise linear function.

(2a) (10 points) Show that a continuous solutionu of (5) satisfies
∫ xj

xj−1

∂u

∂t
(x, t) vN(x) dx −

∫ xj

xj−1

f(u(x, t))
dvN

dx
(x) dx+

f(u(xj, t))vN(xj−) − f(u(xj−1, t))vN(xj−1+) = 0 ∀vN ∈ VN , j ∈ Z . (7)

Here, we adopted the notationv(xj±) := lim
δ→0+

v(xj ± δ) in order to resolve the ambiguity of

v(xj).

HINT: Perform the usual steps in the derivation of a spatial variational formulation: test, integrate,
and integrate by parts (in space).

Next, we aim for a spatial Galerkin semi-discretization of (7) based on the spaceVN . However,
plugginguN ∈ VN into (7) instead ofu faces the problem of ambiguity off(u(xj, t)). Therefore
f(u(xj, t)) in (7) is replaced with anumerical fluxF (u(xj−), u(xj+))), which leads to the semi-
discretediscontinuous Galerkin variational problem: seekuN : [0, T ] 7→ VN such that

∫ ∞

−∞

∂uN

∂t
(x, t) vN(x) dx −

∞∑

j=∞

∫ xj

xj−1

f(uN(x, t))
dvN

dx
(x) dx+

∞∑

j=−∞

F (uN(xj−, t), uN(xj+, t))(vN(xj−) − vN(xj+)) = 0 ∀vN ∈ VN . (8)

(2b) (10 points) We knowa priori thatu0 is compactly supported in[0, 1], 0 ≤ u0(x) ≤ 1 and
that|f ′(u)| ≤ c for all 0 ≤ u ≤ 1. If T = 1, which is the smallest truncated spatial mesh

M̂ := {]xj−1, xj[: xj = hj, j ∈ {−Ml, . . . ,Mr}} (9)

that allows the spatial discretization of (5) without any impact of the truncation? Find the numbers
Ml,Mr ∈ N0.

(2c) (15 points) We denote bŷVN the spaceVN restricted to the spatial interval covered by the
truncated spatial mesĥM from (9). As basis of̂VN we choose

{
b−Ml

1 , b−Ml

2 , b−Ml+1
1 , b−Ml+1

2 , . . . , bMr−1
1 , bMr−1

2 , bMr

2 , bMr

2

}
, (10)
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where

bj
1(x) =

{
1 for xj−1 ≤ x < xj ,

0 elsewhere,
, bj

2(x) =

{
x − 1

2
(xj−1 + xj) for xj−1 ≤ x < xj ,

0 elsewhere.

(11)

In (8) we expanduN into these basis functions on the truncated meshM̂ with meshwidthh,
testing withvN = bj

1 andvN = bj
2. This leads to an ordinary differential equation (ODE) for the

time-dependent coefficient vector~µ = ~µ(t) ∈ R
N , N := 2(Ml + Mr + 1), of the semi-discrete

Galerkin solution, assuming the ordering of basis functions given in (10). This ODE takes the
form

B
d

dt
~µ + G(~µ) = 0 , (12)

with a matrixB ∈ R
N,N and potentially non-linear functionG : R

N 7→ R
N .

Write anefficientMATLAB function

function B = compBmat(h,Ml,Mr)

that computes the matrixB givenMl, Mr, andh.

(2d) (20 points) Give a formula for the functionG from (12) in terms of a general flux function
f and two-point numerical fluxF = F (v, w). Simple point evaluations and integrals off andF
may be used.

HINT: If it helps, you can use the notationµi,1 andµi,2 to reference the elements in a vector~µ
corresponding to basis functionsbi

1 andbi
2 respectively (e.g. as ifµ were a matrix).

(2e) (10 points) (Depends on (2d))

Now use the two point Gaussian quadrature rule
∫ 1

0

ϕ(ξ) dξ ≈ 1

2

(
ϕ(1

2
(1 − 1√

3
)) + ϕ(1

2
(1 + 1√

3
))

)
(13)

to approximate all integrals occurring in the expression for G obtained in the previous sub-
problem. State the resulting formula.

HINT: Do not forget the rescaling of quadrature weights when using (13) on an interval of length
h.

(2f) (20 points) (Depends on (2d) and (2e))

Write a MATLAB function

function gvec = G(muvec,f,F,Ml,Mr,h)

that evaluatesG(~µ) for a coefficient vector~µ passed inmuvec, on a finite equidistant mesĥM
described byMl, Mr, andh. The argumentsf andF contain function handles to the flux function
f = f(u) and the numerical fluxF = F (v, w), respetively. 2-point Gaussian quadrature as in the
previous sub-problem is to be used.

HINT: Use the MATLAB functionreshape to work with 2 × N/2-matrices instead ofN × 1-
vectors to make your code easier to read (and write), cf. the hint for (2d).
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(2g) (15 points) We rely on the spatial discontinuous Galerkin semi-discretization on a trun-
cated meshM̂ described above. Write a MATLAB function

function mufinal = dgcl(mu0,f,F,T,Ml,Mr,h,m)

that usesm uniform timesteps of the explicit 2-stage Runge-Kutta timestepping scheme described
by the Butcher scheme

0 0 0
1
2

1
2

0
0 1

, (14)

to compute an approximation ofu(x, T ) for final timeT > 0. mu0 passes the coefficient vector
of an approximation ofu0. All other arguments play the same roles as in sub-problems (2e) and
(2f).

HINT: Scrambled reference implementations ofcompBmat and G are available in the files
compBmat ref andG ref.

(2h) (15 points) From now on we consider the traffic flow problem with f(u) = u(1 − u) and
use the so-called Engquist-Osher numerical flux

FEO(v, w) := 1
2
(f(v) + f(w)) − 1

2

∫ w

v

|f ′(ξ)| dξ . (15)

Implement this numerical flux forf(u) = u(1 − u) as a MATLAB function

function F = Feo(v,w) .

(2i) (15 points) Use the fully discrete discontinuous Galerkin solver implemented indgcl from
sub-problem (2h) with Engquist-Osher numerical flux andf(u) = u(1−u) to solve the evolution
problem over the time interval[0, 1] with initial data

u0(x) =

{
1 for 0 ≤ x ≤ 1 ,

0 elsewhere.
(16)

As spatial mesh width useh = 0.05, timestepτ = h/3, and truncate the mesh to[−2, 2].

Plot the spatial cell averages of the obtained approximation of u(x, 1) versus the spatial variable
x.

All this should be accomplished by the MATLAB script

solveTrafficFlow.

HINT: Reference implementations ofdgcl andFeo are available in the filedgcl ref.p and
Feo ref.p. Take care to getmu0 right.
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Problem 3. Basis transformation [50 points]

Let a polygonΩ ⊂ R
2 be equipped with a triangular meshM, whose vertices (setV(M)) and

edges (setE(M)) are numbered from1 to ♯V(M) and♯E(M), respectively.

We consider the spaceVN = S0
2 (M) of quadratic Lagrangian finite element functions onM. A

basis of this space is given by the standard nodal basis.

Bq = {b̃j
N}N

j=1, N = ♯V(M) + ♯E(M) ,

where we number the♯V(M) vertex associated basis functions before the♯E(M) edge associated
basis functions.

Another basis forVN is the hierarchical basis given by

Bh = {b̂j
N}N

j=1, b̂j
N =

{
bj
N , j = 1, . . . , ♯V(M) ,

b̃j
N , j = ♯V(M), . . . , ♯V(M) + ♯E(M) ,

where{bj
N}♯v

j=1 is the nodal basis for the spaceS0
1 (M) of linear Lagrangian finite element func-

tions, and̃bj
N are the edge associated nodal basis functions fromBq.

(3a) (20 points) Let~µq be the coefficient vector of a functionuN ∈ VN w.r.t. the nodal basis
Bq. Further let~µh be the coefficient vector of thesamefunctionuN w.r.t. the hierarchical basis
Bh.

For the meshM depicted in figure 2 find the matrixS ∈ R
N,N , N = 4 + 5 such thatµh = Sµq.

Use the numbering of the basis functions as indicated by edgeand vertex numbers in figure 2.

e1

e2
e3 e5

e4

v1 = (−1, 0) v2 = (0, 0) v4 = (1, 0)

v3 = (0, 1)

Figure 2: Mesh for sub-problem (3a)

(3b) (10 points) Now we consider a general polygonΩ equipped with a triangular meshM.
Retain the notationS from sub-problem (3a) for theN × N matrix that transforms a coefficient
vector w.r.t. toBq into a coefficient vector w.r.t.Bh.

Let a(·, ·) be a continuous bilinear form onH1(Ω), Aq andAh be the Galerkin matrices ofa w.r.t.
to Bq andBh, respectively. How canAh be obtained fromAq using the matrixS?
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(3c) (20 points) (Depends softly on (3a))

Given the meshM in the usual LehrFEM data structuremesh, write an efficient function

function mu hier = basistrf(Mesh, mu nod),

wheremu hier andmu nod correspond to the coefficient vectors~µh and~µq, of auN ∈ VN with
respect toBh andBq, respectively. The argumentMesh passes a LehrFEM mesh data structure
complete with edge information.

HINT: : You need not create the matrixS!

Problem 4. Maximum principle [80 points]

For a constant0 ≤ c < 1 we consider the 2nd-order elliptic boundary value problem

−(1 − c)△u + cu = f in Ω ,

u = 0 on∂Ω ,
(17)

where the source functionf ∈ L2(Ω) is continuous onΩ and satisfiesf(x) ≤ 0 for all x ∈ Ω.

(4a) (5 points) State a quadratic minimization problem on a suitable function space, whose
solution agrees with the solution of (17).

(4b) (15 points) (Depends softly on (4a))

Argue why

max
x∈Ω

u(x) = 0 (18)

holds. Why isf ≤ 0 important for your argument?

HINT: Employ a reasoning similar to that in the “visual proof” of the maximum principle in the
lecture, see figure 3.

(4c) (20 points) For the finite element Galerkin discretization of (17) on Ω =]0, 1[2 we em-
ploy the linear Lagrangian finite element spaceS0

1,0(M) on a “regular” meshM as depicted in
figure 4(a).

Write a MATLAB script

nomaxprinc

that runs a computational counterexample and produces a suitable output in order to demonstrate
that for certain values ofc the finite element solutionuN ∈ S0

1,0(M) does not satisfy (18).

You may use the LehrFEM function (provided in the filesolveBVP.m)

function u = solveBVP(M,c,f)

that computes the coefficient vector of a finite element solution uN ∈ S0
1,0(M) of the boundary

value problem (17) with respect the nodal basis. It uses a “regular mesh” withM ∈ N cells in
each direction as displayed in Fig. 4(a). The argumentc passesc ∈ [0, 1[, andf a handle of type
@(x1,x2) to the source functionf .

HINT: Try c ≈ 1.
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Figure 3: A visual cue for the proof requested in sub-problem(4b)

(4d) (20 points) Again, we consider the finite element Galerkin discretization of (17) onΩ =
]0, 1[2 based onS0

1,0(M).

On a triangular meshM as in Figure 4(a) with meshwidthh := 1
M+1

, M ∈ N, we assemble the
Galerkin matrix using the local numerical quadrature

∫

K

φ(x)dx ≈ 1

3
|K|

3∑

i=1

φ(ai) , K ∈ M ,

whereai are the vertices of the triangleK.

Write a MATLAB function

function A = compA(M,c)

that computes the resulting (sparse!) Galerkin matrix, if the standard nodal basis ofS0
1,0(M) is

used and the numbering of the basis functions is induced by the lexikographic numbering of the
vertices as given in Figure 4(b).

HINT: Several MATLAB commands come handy for this problem likespdiags, kron,
gallery(’triadiag’,...). A scrambled reference implementation ofcompA is provided
in the filecompA ref.p.

(4e) (20 points) (Depends softly on (4d))

Show that for the Galerkin finite element discretization of (17) onΩ =]0, 1[2 introduced in sub-
problem (4d) the propertyuN(x) ≤ 0 is satisfied for the finite element solution, iff(x) ≤ 0 for
all x ∈ Ω.

Problem References

[NPDE] Lecture Slidesfor the course “Numerical Methods for Partial DifferentialEquations”,
SVN revision # 54024.
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(a) Regular triangular mesh

M−1

M+1

M

M*M

2 3

M+2 M+3 2M

M(M−1)+1

1

(b) Lexikographic numbering of interior vertices

Figure 4: Mesh and vertex numbering for Problem 4
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