
Course 401-3663-00S: Numerical Solution of
Differential Equations

Examination, 08.08.2012

Prof. Philipp Grohs Dont’t panic!
Good luck!

Duration of examination: 180 minutes

The total number of points is 235. Please pay attention to thenumber of points awarded for
each (sub-)task. It is roughly correlated with the amount ofinformation your answer should
contain. For additional information see the examination instruction sheet.

Problem 1. Parabolic timestepping with Crank-Nicolson and implicit Eu-
ler [85 points]

Let Ω := (0, 1)2 and consider the problem

∂u

∂t
− ∆u = f in (0, T ] × Ω,

u = g on (0, T ] × ∂Ω,

u = u0 on {0} × Ω,

wheref , g andu0 are given suchu(t,x) = cos (2πx1) sin (tπx2) is the exact solution.

(1a) (5 points) Derive the variational formulation for this parabolic problem.

(1b) (10 points) Show that the initial value problem arising froma spatial discretization of the
variational formulation using piecewise linear finite elements with basis functions{bi

N}i is given
by

M
d

dt
~µ(t) + A~µ(t) = F (t) ,

M~µ(0) = ~µ0 ,
(1)

where~µ(t) is the finite element coefficient vector,~µ0 = ~µ(0), F is the time-dependent load
vector

Fi(t) =

∫

Ω

f(t,x)bi
N(x)dx,

andM andA are the mass- and Galerkin matrices respectively

Mji =

∫

Ω

bi
N(x)bj

N(x)dx, Aji =

∫

Ω

grad bi
N(x) · grad bj

N(x)dx.

(1c) (15 points) For an initial value problem

ẏ = h(t,y) , y(0) = y0,
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let the time-stepping scheme be given form = 0, . . . ,M by theCrank-Nicolson scheme

y(m+1) = y(m) +
1

2
∆t

(

h(tm,y(m)) + h(tm+1,y
(m+1))

)

,

with initial valuey(0) = y0, time step∆t := T/M and time pointstm := m∆t.

For which∆t is this scheme stable?

HINT: Consider the ODĖy = λy for λ < 0.

(1d) (10 points) Show that the Crank-Nicolson scheme applied to (1) gives the following linear
system:

(

M +
1

2
∆tA

)

~µ(m+1) =

(

M − 1

2
∆tA

)

~µ(m) +
1

2
∆t (F m+1 + F m) , (2)

whereF k = F (tk).

(1e) (15 points) Implement (2) arising from a spatial discretization of the variational formula-
tion using piecewise linear finite elements by completing the routine

main crank.

Use the supplied functionp12 for any quadrature that you might need. For each level of mesh
refinement, use the number of timesteps needed to balance theerrors from time and space dis-
cretization.

Run your code and plot the convergence. What type of convergence and what order do you
observe?

(1f) (15 points) Use the implicit Euler scheme and linear Lagrangian elements to derive a new
timestepping scheme for this problem.

Copy your code formain crank to

main implEul,

and modify it so that it calculates the convergence rate for the implicit Euler timestepping scheme.

Plot the convergence rate and comment on the type of convergence and the rate.

HINT: For an ODEẏ = h(t,y), the implicit Euler scheme with timestepτ is

y(m+1) = y(m) + τh(tm+1,y
(m+1)).

(1g) (15 points) Make a copy ofmain crank andmain implEul called

main crank nonsmooth

and

main implEul nonsmooth
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respectively. In these files, usef ≡ 0 and use the suppliedu jump function for both initial
condition and Dirichlet boundary data. This function is

u0(x) =

{

1, x1 < x2,

0, otherwise,

i.e. it is not smooth. Remove all theL2-error computing code, since we no longer have an exact
solution. Instead, for each mesh refinement level, plot the solution along the diagonal from(0, 1)
to (1, 0) using the LehrFEM functionplotLine LFE.

Run both scripts and comment on what you see.

Problem 2. The Euler-Bernoulli equation [100 points]

The scaled Euler-Bernoulli equation in one dimension reads

d4u

dx4
= q(x) (3)

for x ∈ (0, L), with boundary conditions

u(0) = u′(0) = 0,
d2u

dx2
(L) = M0,

d3u

dx3
(L) = −F. (4)

(2a) (5 points) Show that the variational formulation for this problem is to find

u ∈ S =
{

f ∈ H2(0, L) | f(0) = f ′(0) = 0
}

so that
∫ L

0

u′′v′′dx =

∫ L

0

uqdx + Fv(L) + M0v
′(L)

for all v ∈ S.

HINT: The left-hand boundary conditions should be treated asessential, that is, a part of the
function spaces. The right-hand boundary conditions should be treated asnon-essential. They
will enter the variational formulation as part of the linearfunctionalℓ.

(2b) (5 points) To solve this problem we will be using piecewisecubic finite elements on a uni-
form grid with meshwidthh. For each element, we will use the degrees of freedom corresponding
to the values of the functionand its derivatives at the endpoints of the element.

Show that on the reference element(−1, 1), the four shape functions

b̂1(ξ) =
1

4
(1 − ξ)2(2 + ξ) b̂2(ξ) =

1

4
(1 − ξ)2(1 + ξ)

b̂3(ξ) =
1

4
(1 + ξ)2(2 − ξ) b̂4(ξ) =

1

4
(1 + ξ)2(ξ − 1)

satisfy the conditions.

HINT: You need to show the following

b̂1(−1) = 1, b̂′1(−1) = 0, b̂1(1) = 0, b̂′1(1) = 0,

b̂2(−1) = 0, b̂′2(−1) = 1, b̂2(1) = 0, b̂′2(1) = 0,

b̂3(−1) = 0, b̂′3(−1) = 0, b̂3(1) = 1, b̂′3(1) = 0,

b̂4(−1) = 0, b̂′4(−1) = 0, b̂4(1) = 0, b̂′4(1) = 1.
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(2c) (10 points) Write a MATLAB routineshap = shap CFE(x) that computes the values
of the shape functions in the points given in theN × 1-vectorx (relative to(−1, 1)) and returns
them in theN × 4-vectorshap.

Make a plot of the four shape functions on the reference element.

(2d) (10 points) LetK = [xj, xj+1] be a given element withxj+1 − xj = h. What are the
transformed shape functionsbi

K , i = 1, . . . , 4, on this element?

HINT: Normal affine transformation applies. You must scale the second and fourth shape function
to preserve the conditions

b1
K(xj) = 1, b1

K
′(xj) = 0, b1

K(xj+1) = 0, b1
K

′(xj+1) = 0,

b2
K(xj) = 0, b2

K
′(xj) = 1, b2

K(xj+1) = 0, b2
K

′(xj+1) = 0,

b3
K(xj) = 0, b3

K
′(xj) = 0, b3

K(xj+1) = 1, b3
K

′(xj+1) = 0,

b4
K(xj) = 0, b4

K
′(xj) = 0, b4

K(xj+1) = 0, b4
K

′(xj+1) = 1.

(2e) (10 points) The second derivatives of the shape functionson the reference element are

b̂′′1(ξ) =
3

2
ξ b̂′′2(ξ) =

3

2
ξ − 1

2

b̂′′3(ξ) = −3

2
ξ b̂′′4(ξ) =

3

2
ξ +

1

2

Show that the element stiffness matrix for an elementK of sizeh is

AK =
1

h3









12 6h −12 6h
6h 4h2 −6h 2h2

−12 −6h 12 −6h
6h 2h2 −6h 4h2









.

HINT: Remember to that the transformation scales the second derivatives by(2/h)2. Note also
the scaling factor introduced in (2f).

HINT: You only need three integrals (of1, ξ andξ2). The rest is simple algebra.

Given a mesh
M = {0 = x0, x1, . . . , xN = L}

made up of elementsKj = [xj, xj+1], for j = 0, . . . , N − 1, we define the global basis functions
b1
j andb2

j for j = 0, . . . , N as

b1
j(x) =

{

b3
Kj−1

(x), x ∈ Kj−1

b1
Kj

(x), x ∈ Kj

and

b2
j(x) =

{

b4
Kj−1

(x), x ∈ Kj−1

b2
Kj

(x), x ∈ Kj.

In this way, shape functions1 and3 on two consecutive elements are joined to form one basis
function b1

j , much like how piecewise linear tent functions work. The same works with shape
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functions2 and4 formingb2
j . Note that the basis functions are piecewise polynomial andglobally

continuously differentiable.

We will employ the basis numbering according to the listing

{b1
0, b

2
0, b

1
1, b

2
1, . . . , b

1
N , b2

N}.

(2f) (15 points) Write a MATLAB function

A = assemMat CFE(L, N)

that takes in the domain size parameterL and a number ofelements N , and returns the global
stiffness matrixA of size2(N + 1) × 2(N + 1).

(2g) (15 points) Write a MATLAB function

L = assemLoad CFE(L, N, q, F, M0)

that takes in the same parameters as before, and in addition afunction handle toq (which you
can assume is vectorizable, i.e. it can take vector arguments, not just doubles), as well as the
boundary conditionsF andM0, and returns the column load vector of size2(N + 1).

HINT: Use two-point Gaussian quadrature to evaluate the integrals you need. Relative to(0, 1),
it has points±1/

√
3 and weights1. Do not forget to transform.

(2h) (15 points) Write a MATLAB function

[xpts,U] = eval CFE(L, N, u, K)

that takes in the previously mentioned argumentsL andN , as well as a coefficient vectoru of
size2(N + 1) and a positive integerK, and outputs a list ofKN + 1 equally spacedx-points in
xpts and the corresponding values of the functionu in U.

HINT: Remember to scale the shape functions2 and4 by h/2.

(2i) (15 points) Write a MATLAB script

main CFE

to solve the problem (3)-(4) with the conditionsL = 1, M0 = −2π, F = −π3 and

q(x) = −4π3 cos(πx) + π4x sin(πx)

usingN = 10, 20, . . . , 100. Evaluate the solutions usingeval CFE with K = 11, and use these
points as quadrature rules to compute theL2-error for each mesh. The exact solution is

u(x) = x sin(πx).

Plot the convergence rate of theL2-error and comment on the type of convergence and its rate.
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Problem 3. One-dimensional conservation law [50 points]

In this problem we will develop a relatively simple solver for the one-dimensional conservation
law

du

dt
+

d

dx
(u4) = 0 (5)

with flux functionf(u) = u4 and initial conditionu(0, x) = u0(x).

(3a) (10 points) Write a MATLAB function

characteristics(a, b, T, N, u0)

that takes in a functionu0 and plots characteristics for it in the(x, t)-plane. The plot should be
restricted to thex-interval [a, b] and thet-interval [0, T ], showing characteristics starting inN
different equispaced points along thex-axis.

Produce plots for bothu0(x) = e−x2

and

u0 =

{

1, −1
2

< x < 1
2

0, otherwise.

Why can you not use these plots to reconstruct the solutionu(x, t)?

We will be solving (5) using ordinary finite volume methods totrack the evolution of thecell
averages µj(t), defined for some grid{xj}j as

µj(t) =
1

xj+1 − xj

∫ xj+1

xj

u(t, x)dx.

The ODE in question is

dµj

dt
= −1

h
[F (µj, µj+1) − F (µj−1, µj)] , (6)

whereF is a numerical flux function.

(3b) (10 points) We will be using theLax-Friedrich numerical flux function

FLF(v, w) =
1

2
(f(v) + f(w)) − 1

2
(w − v) max

u∈[v,w]
|f ′(u)|.

Implement a MATLAB function

F = Flf(v, w)

that computes the Lax-Friedrich flux function for twoscalar (that is, not vectorized) inputsv and
w, using the flux functionf(u) = u4.

(3c) (10 points) Implement a MATLAB function

F = Flfvec(mu)

That takes in a column vector of cell averages~µ and outputs the quantities

F (µj, µj+1) − F (µj−1, µj)

for eachj. Assume that~µ extends indefinitely to the left and right with zero.

HINT: You can usearrayfun to vectorize your implementation from (3b).
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(3d) (10 points) For timestepping, we will use the explicit Heun scheme (also know as improved
Euler), which is given by the Butcher table

0 0 0
1 1 0

1
2

1
2

, (7)

Implement a MATLAB function

mufinal = heun(mu0, h, T, M)

that performsM timesteps of the Heun method using the initial vector of cellaveragesmu0 and
final timeT . The spatial resolutionh is also given.

(3e) (10 points) To test your implementation, write a MATLAB script

main

That runs the timestepping forT = 1 with M = 100 timesteps using the initial condition

u0(x) =

{

1, −1
2
≤ x ≤ 1

2

0, otherwise.

Use a mesh covering the interval[−2, 2] with 80 cells. Plot the final distribution.

Problem References

[NPDE] Lecture Slidesfor the course “Numerical Methods for Partial DifferentialEquations”,
SVN revision # 54024.

Last modified on April 11, 2013
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