Course 401-3663-00S: Numerical Solution of
Differential Equations
Examination, 08.08.2012

Prof. Philipp Grohs Dont' panic!
Good luck!

Duration of examination: 180 minutes

The total number of points is 235. Please pay attention tatimeber of points awarded for
each (sub-)task. Itis roughly correlated with the amounibfafrmation your answer shoul
contain. For additional information see the examinatiatrirction sheet.

o

Problem 1. Parabolic timestepping with Crank-Nicolson and implicit Eu-
ler [85 points]
Let(2 := (0, 1)? and consider the problem

— —Au=f in (0,7] x Q,
u=g on (0,7] x 09,
u=ug on {0} x Q,

wheref, g andu, are given such(t, x) = cos (2mz) sin (twz) is the exact solution.
(1a) (5 points) Derive the variational formulation for this plaodic problem.

(1b) (10 points) Show that the initial value problem arising frarapatial discretization of the
variational formulation using piecewise linear finite elarts with basis functiongy, }, is given

by
M S ilt) + A1) = ().
M i(0) = f ,
wherefi(t) is the finite element coefficient vectqi, = fi(0), F is the time-dependent load
vector

(1)

R = | ftapi(e)d

and M and A are the mass- and Galerkin matrices respectively
M;; = / by ()b () de, A = / grad by, (z) - grad b, (z)dz.
Q Q

(1c) (15 points) For an initial value problem

y=h(t,y), y(0)=uy,,
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let the time-stepping scheme be given#or= 0, ..., M by theCrank-Nicolson scheme
1
y " =y SAL (Bt y"™) + A, yY))

with initial valuey® = y,, time stepAt := T'/M and time points,, := mAt.
For which At is this scheme stable?
HINT: Consider the ODEy = \y for A < 0.

(1d) (10 points) Show that the Crank-Nicolson scheme applied)tgi¢es the following linear
system:

1 1
(M 1 %AtA) gty = (M - 5AtA) RIS S AL (Fmir + Fr). 2

whereF';, = F(t;).

(1e) (15 points) Implement (2) arising from a spatial discret@a of the variational formula-
tion using piecewise linear finite elements by completirgributine

mai n_cr ank.

Use the supplied functiop12 for any quadrature that you might need. For each level of mesh
refinement, use the number of timesteps needed to balanegrtrs from time and space dis-
cretization.

Run your code and plot the convergence. What type of conveegend what order do you
observe?

(2f) (15 points) Use the implicit Euler scheme and linear Lagimmglements to derive a new
timestepping scheme for this problem.

Copy your code formai n_cr ank to
mai n_i npl Eul ,

and modify it so that it calculates the convergence ratehiirplicit Euler timestepping scheme.
Plot the convergence rate and comment on the type of comveggand the rate.

HINT: For an ODEy = h(t,y), the implicit Euler scheme with timestepis
Yt =y b Th(t, y™ ).
(1g) (15 points) Make a copy afai n_cr ank andmai n_i npl Eul called
mai n_cr ank_nonsnoot h
and

mai n_i npl Eul _nonsnoot h
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respectively. In these files, uge= 0 and use the supplied_j unp function for both initial
condition and Dirichlet boundary data. This function is

1 <
Uo(w) :{ ) xq T2,

0, otherwise

i.e. it is not smooth. Remove all the’-error computing code, since we no longer have an exact
solution. Instead, for each mesh refinement level, plot thetisn along the diagonal frorfo, 1)
to (1,0) using the LehrFEM functiopl ot Li ne_LFE.

Run both scripts and comment on what you see.

Problem 2. The Euler-Bernoulli equation [100 points]

The scaled Euler-Bernoulli equation in one dimension reads

du
1 = 4@ (3)
for x € (0, L), with boundary conditions
/ d*u d3u
w0) =w'(0) =0,  —5(L) =My, (L) =~F (4)

(2a) (5 points) Show that the variational formulation for thisplem is to find
weS={feH*0,L)|f(0)=f(0)=0}
so that
L L
/ u"v"dr = / ugdz + Fu(L) + Myv'(L)
0 0
forallv € S.

HINT: The left-hand boundary conditions should be treatedssantial, that is, a part of the
function spaces. The right-hand boundary conditions shbaltreated ason-essential. They
will enter the variational formulation as part of the lindanctional.

(2b) (5 points) To solve this problem we will be using piecewssbic finite elements on a uni-
form grid with meshwidtt.. For each element, we will use the degrees of freedom carnelspg
to the values of the functioand its derivatives at the endpoints of the element.

Show that on the reference eleméntl, 1), the four shape functions

(€)= S22 16 b6 = ~(1-6’(1+6)

4 4
(€)= T14E°2-8  h(©)= 10+~ 1)
satisfy the conditions.
HINT: You need to show the following
bi(—1)=1, ¥(=1)=0, b(1)=0, ¥(1)=0,
by(—1) =0, By(=1)=1, by(1)=0, by(1)=0,
bs(—1) =0, By(=1)=0, by(1)=1, B(1)=0,
bi(—1) =0, b (=1)=0, by(1)=0, b, (1)=1.
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(2c) (10 points) Write a MATLAB routineshap = shap_CFE( x) that computes the values
of the shape functions in the points given in tNiex 1-vectorx (relative to(—1, 1)) and returns
them in theN x 4-vectorshap.

Make a plot of the four shape functions on the reference atéme
(2d) (10 points) LetK = [z;,x;11] be a given element with,.; — z; = h. What are the
transformed shape functiob$, i = 1, ..., 4, on this element?

HINT: Normal affine transformation applies. You must scale tlvesd and fourth shape function
to preserve the conditions

~
~

bc(;) =1, br'(2;) =0, by(wj01) =0, b/ (x;11) =0,
bic(;) =0, bi'(z5) =1, bi(wj00) =0, b/ (x;01) =0,
bic(x;) =0, by'(x;) =0, bi(zjm) =1, bi'(2j41) =0,
bic(;) =0, bi'(x5) =0, br(wj00) =0, b/ (z541) =1

(2e) (10 points) The second derivatives of the shape funcinmrtbe reference element are

R 3 - 3 1
vi(§) = 55 by(§) = 55 —3
R 3 A 3 1
V5(§) = —55 by(§) = 55 + B

Show that the element stiffness matrix for an elemérdf sizeh is

12 6h —12 6h
1| 60 4h®> —6h 2h2
| =12 —6n 12 —6h

6h 2h2 —6h 4h2

Ak =

HINT: Remember to that the transformation scales the secondatees by(2/1)2. Note also
the scaling factor introduced in (2f).

HINT: You only need three integrals (0f ¢ and¢?). The rest is simple algebra.

Given a mesh
M :{O:LU(],SL’l,...,IN:L}

made up of element&; = [z;,z;4],forj =0,..., N — 1, we define the global basis functions
b; andb for j =0,...,N as

() = { V(@) @ € oy
J b}(}(l‘), WS Kj

and
b3 (x) = b, (#), @ € Koy
b%(j (Z[‘), T € Kj.
In this way, shape functions and3 on two consecutive elements are joined to form one basis
function bjl., much like how piecewise linear tent functions work. The samorks with shape
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functions2 and4 forming b7. Note that the basis functions are piecewise polynomialghoiahlly
continuously differentiable.

We will employ the basis numbering according to the listing

{b5, b3, b1, b3, ... by, b3}
(2f) (15 points) Write a MATLAB function
A = assenivat _CFE(L, N)

that takes in the domain size parameteand a number oélements NV, and returns the global
stiffness matrixA of size2(N + 1) x 2(N + 1).

(29) (15 points) Write a MATLAB function
L = assenLoad CFE(L, N, q, F, M)

that takes in the same parameters as before, and in addifiorcon handle ta; (which you
can assume is vectorizable, i.e. it can take vector argusnent just doubles), as well as the
boundary conditiong” and M/, and returns the column load vector of seév + 1).

HINT: Use two-point Gaussian quadrature to evaluate the integoai need. Relative t@, 1),
it has pointst1/+/3 and weightsl. Do not forget to transform.

(2h) (15 points) Write a MATLAB function
[ xpts, U = eval CFE(L, N, u, K)

that takes in the previously mentioned argumentsnd N, as well as a coefficient vectar of
size2(N + 1) and a positive integek’, and outputs a list ok’ N + 1 equally spaced-points in
xpt s and the corresponding values of the functiom U.

HINT: Remember to scale the shape functidred4 by 1 /2.

(21) (15 points) Write a MATLAB script
mai n_CFE

to solve the problem (3)-(4) with the conditiofs= 1, M, = 27, F = —7% and
q(z) = —473 cos(nz) + 7w sin(rw)

using N = 10, 20,...,100. Evaluate the solutions usimyal _CFE with K = 11, and use these
points as quadrature rules to compute fReerror for each mesh. The exact solution is

u(z) = xsin(rz).

Plot the convergence rate of tfié-error and comment on the type of convergence and its rate.
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Problem 3. One-dimensional conservation law [50 points]|

In this problem we will develop a relatively simple solver tbe one-dimensional conservation
law q 4
u 4y
dt+dx(u)_0 (5)
with flux function f(u) = u* and initial conditionu(0, x) = ug(x).
(32) (10 points) Write a MATLAB function
characteristics(a, b, T, N, u0)

that takes in a functiom, and plots characteristics for it in thie, ¢)-plane. The plot should be
restricted to thec-interval [a, b] and thet-interval [0, 7], showing characteristics starting iv
different equispaced points along thexis.

Produce plots for both,(z) = ¢** and
o 1, —i<z<3
0 — .
0, otherwise
Why can you not use these plots to reconstruct the solutjont)?

We will be solving (5) using ordinary finite volume methodsttack the evolution of theell
averages /;(t), defined for some gridx; }; as

1 Tj+1 d
i(t) = —— u(t, r)dx.
w0 = e [ uee)
The ODE in question is
dp; 1
d_tj T [F' (kg prj) — F(pj1s 1)1 (6)

whereF' is a numerical flux function.
(3b) (10 points) We will be using theax-Friedrich numerical flux function

Fur(vw) = 5 (7(0) + f(w) = 5w = ) max [7(u)]

Implement a MATLAB function
F=Ff(v, w

that computes the Lax-Friedrich flux function for tsealar (that is, not vectorized) inputsand
w, using the flux functiory (u) = u*.

(3¢c) (10 points) Implement a MATLAB function
F = Fl fvec(nu)
That takes in a column vector of cell averageand outputs the quantities

Fpgs pja) — Fpj-1, py)
for each;. Assume thafi extends indefinitely to the left and right with zero.

HINT: You can usar r ayf un to vectorize your implementation from (3b).
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(3d) (10 points) For timestepping, we will use the explicit Heaheme (also know as improved
Euler), which is given by the Butcher table

, (7)

Implement a MATLAB function
mufinal = heun(rmuO, h, T, M

that performs\/ timesteps of the Heun method using the initial vector of aefiragesru0 and
final timeT'. The spatial resolutioh is also given.

(3e) (10 points) To test your implementation, write a MATLAB satri
mai n
That runs the timestepping f@r = 1 with M = 100 timesteps using the initial condition

U\ ) =
0 0, otherwise

Use a mesh covering the interyal2, 2] with 80 cells. Plot the final distribution.

Problem References

[NPDE] Lecture Slidedor the course “Numerical Methods for Partial Differentiaduations”,
SVN revision # 54024.

Last modified on April 11, 2013
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