
R. Hiptmair
L. Scarabosio
E. Fonn

Spring Term 2013

Numerical Methods for Partial
Differential Equations

ETH Zürich
D-MATH

Exam Summer 2013

Problem 1 Entropy Solution [19 points]
We consider the Cauchy problem for the 1D scalar conservation law

∂u

∂t
+

∂

∂x
(cosh(u)) = 0 in R×]0, T [, (1.1)

u(x, 0) = u0(x) x ∈ R , (1.2)

where cosh(u) = 1
2
(ex + e−x) with cosh′(u) = sinh(u) := 1

2
(ex − e−x), see Figure 1.1

−1.5 −1 −0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

 x

cosh(x)

sinh(x)

Figure 1.1: Graphs of hyperbolic trigonometric functions

(1a) [I, 3 points]

Show that for

u0(x) =

{
−1 , for x < 0

1 , for x > 0 ,
(1.3)

u(x, t) = u0(x) for all t > 0, x ∈ R, is a valid weak solution.

Exam Summer 2013 Page 1 Problem 1

(1b) [I, 3 points]

Explain why the weak solution (1.3) fails to be an entropy solution?

(1c) [I, 3 points]

In the x − t-plane sketch the zone, where the entropy solution of (1.1) with initial data (1.3) can
be different from ±1.

(1d) [I, 4 points]

Sketch the entropy solution of (1.1) with initial data (1.3) at time t = 1.

(1e) [I, 6 points]

Implement a MATLAB function

function F = godnfn(v,w)

that implements the Godunov numerical flux function FGD(v, w) from [NPDE, Equ. 8.3.35] for
use with a conservative finite volume method for (1.1).

Problem 2 Crouzeix-Raviart Finite Elements [60 points]
Let a triangular mesh M of a 2D polygonal bounded domain Ω ⊂ R2 be given and write N =
{m1, . . . ,mN} for the set of the midpoints of its edges. A numbering of these points is assumed.

The so-called Crouzeix-Raviart finite element space CR(M) ⊂ L2(Ω) on the mesh M is defined
as the span of the functions bjN , j = 1, . . . , N , which satisfy

biN |K ∈ P1(K) ∀K ∈ M , biN(mj) =

{
1 , if i = j ,

0 else,
i, j ∈ {1, . . . , N} . (2.1)

(2a) [I, 2 points]

Show that (2.1) provides a valid definition of the functions bjN .

(2b) [I, 2 points]

Show that the set of functions {bjN : j = 1, . . . , N} is linearly independent.

(2c) [I, 3 points]

Show that CR(M) ̸⊂ H1(Ω).

(2d) [I, 2 points]

Describe the support of a basis function biN .

(2e) [I, 3 points]

We use the biN from (2.1) as global shape functions. Show that the local shape functions for
CR(M) on a triangle K can be expressed in terms of the barycentric coordinate functions λi on
K as follows:

bjN |K = 1− 2λopp(j) , j = 1 . . . , N , (2.2)

Exam Summer 2013 Page 2 Problem 2

where opp(j) is the local index of the vertex opposite of mj on triangle K ∈ M.

(2f) [I, 4 points]

Compute the element (Galerkin) matrix for the finite element space CR(M) and the bilinear form

a(u, v) =

∫
Ω

uv dx , u, v ∈ L2(Ω) .

HINT: Use the integral formula for barycentric coordinate functions on a triangle K:∫
K

λα1
1 λα2

2 λα3
3 dx = |K| α1!α2!α3!2!

(α1 + α2 + α3 + 2)!
.

For the implementation of finite element methods based on Crouzeix-Raviart finite element spaces
in LehrFEM we use the bjN from (2.1) as global shape functions and number them according
the intrinsic numbering of edges in LehrFEM as induced by the Edges field of the mesh data
structure.

(2g) [6 points]

Implement a LehFEM function

function l2err = L2Err CR(Mesh,mu,Fhandle)

that takes an extended LehrFEM mesh data structure complete with edge information (in Mesh),
a coefficient vector mu of length N describing a function uN ∈ CR(M) (in mu), and a handle
of type @(x) to a continuous function u : Ω 7→ R (in FHandle). The return value should pro-
vide an approximation for ∥u− uN∥L2(Ω) computed by means of the local numerical quadrature
offered by the LehrFEM function P7O6.

HINT: You can use the LehrFEM function shap LFE to get values of the barycentric coordinate
functions on the reference element. Use the Mesh data field Vert2Edge to access edge numbers.

(2h) [I, 3 points]

We introduce the mesh-dependent bilinear form

aM(u, v) :=
∑
K∈M

∫
K

gradu · grad v dx . (2.3)

Derive a formula for the entries of the element matrices for the Galerkin discretization of aM
based on CR(M). The entries of the element matrix for triangle K should be expressed in terms
of the angles ωk, k = 1, 2, 3 of K, see [NPDE, Figure 117]. Follow the convention that the i-th
local edge is opposite to the i-th local vertex, i = 1, 2, 3.

HINT: Use (2.2) and [NPDE, Formula 3.2.10].

(2i) [2 points]

Implement the LehrFEM function

function Aloc = STIMA Lapl CR(Vertices)

Exam Summer 2013 Page 3 Problem 2

that computes the element matrix for aM and the Crouzeix-Raviart finite element space. The local
numbering scheme of the previous sub-problem applies and the 3×2 matrix Vertices contains
the coordinates of the vertices of a triangle in its rows.

HINT: Recall the result of the sub-problem (2h) and use the LehrFEM function
Aloc = STIMA Lapl LFE(Vertices,varargin) from the LehrFEM library that com-
putes the element matrices for aM for the piecewise linear Lagrangian finite element spaces
S0
1 (M).

(2j) [I, 6 points]

Implement an efficient LehrFEM function

function A = assemMat Lapl CR(Mesh)

that computes the (global) Galerkin matrix for the bilinear form aM discretized by means of a
Crouzeix Raviart finite element space defined on a triangular mesh passed through the LehrFEM
mesh data structure Mesh. You can take for granted that complete edge information is available
in Mesh. The choice of global shape functions and numbering schemes as introduced above still
apply.

HINT: You may rely on the function STIMA Lapl CR from sub-problem (2i). The field
Vert2Edge of the extended LehrFEM mesh data structure comes handy.

(2k) [I, 2 points]

Prove that the Galerkin matrices for aM and the finite element spaces CR(M) are always positive
semidefinite.

(2l) [I, 6 points]

Assume that Ω is connected. Show that the kernel of the Galerkin matrix arising from the dis-
cretization of aM based on the basis {bjN}Nj=1 of CR(M) from (2.1) is one-dimensional and
spanned by the vector with all entries = 1.

(2m) [I, 6 points]

Given a triangular mesh M of Ω and a continuous function g : ∂Ω 7→ R, we consider the
following discrete variational problem: seek uN ∈ CR(M) such that

uN(m) = g(m) ∀m ∈ N∂ , aM(uN , vN) = 0 ∀vN ∈ CR0(M) . (2.4)

Here the following notations have been used:

• N∂ := {p ∈ N : p ∈ ∂Ω} (midpoints of edges on the boundary) ,

• CR0(M) := {v ∈ CR(M) : v(m) = 0 ∀m ∈ N∂} .

Implement a LehrFEM function

function mu = Solve LaplDir CR(Mesh, GHandle)

Exam Summer 2013 Page 4 Problem 2

that computes the coefficient vector (w.r.t. the basis
{
bjN

}N

j=1
from (2.1)) for the solution uN ∈

CR(M) of (2.4). The argument Mesh passes a basic LehrFEM mesh data structure for M (with
fields Coordinates and Elements initialized) and GHandle is a function handle of type
@(x) providing the function g. The returned coefficient vector for uN should have N compo-
nents, where N is the number of all edges in the mesh M.

HINT: Perform a treatment of Dirichlet boundary conditions by elimination as explained in
[NPDE, Example 3.5.57] and [NPDE, Example 3.5.61].

(2n) [I, 4 points]

Somebody claims that the Crouzeix-Raviart finite element space and, in particular, the LehrFEM
function Solve LaplDir CR from sub-problem (2m) can be used to solve the boundary value
problem

−∆u = 0 in Ω, u = g on ∂Ω , (2.5)

though CR(M) ̸⊂ H1(Ω)! Test this claim numerically for Ω =]0, 1[2 by using u(x) = log(
∥∥x+

(
1
0

)∥∥),
which satisfies ∆u = 0 on Ω, and computing ∥u− uN∥L2(Ω) for four different meshes aris-
ing from global regular refinement of an initial coarse mesh read in from the supplied files
Coords.dat and Elems.dat.

To that end complete the implementation of the MATLAB function

[l2errvec,meshwidths] = cvg LaplDir CR

so that it returns a vector of the values ∥u− uN∥L2(Ω) and a vector of mesh-widths of the corre-
sponding meshes.

HINT: The return values you should get can be loaded from the MATLAB data file l2err CR.dat.

(2o) [I, 3 points]

Based on the numerical results of the previous sub-problem, describe qualitatively and quantita-
tively the observed convergence of ∥u− uN∥L2(Ω) as the mesh-width tends to 0.

HINT: The error norms and corresponding mesh widths are also available in the MATLAB data
file l2err CR.dat, which can be read by MATLAB’s load function.

(2p) [I, 6 points]

Describe under which assumptions on the mesh M the solution of (2.4) will satisfy a special
discrete maximum principle in the sense that

min
p∈N∂

uN(p) ≤ uN(m) ≤ max
p∈N∂

uN(p) ∀m ∈ N . (2.6)

HINT: Use the result from subproblem (2h).

Exam Summer 2013 Page 5 Problem 2

Problem 3 2D Finite Volume Method for Advection [39 points]
For a continuous velocity field a : Ω 7→ R2, on Ω =] − R,R[2 we consider the linear advection
problem

∂u

∂t
+ divx(a(x)u) = 0 in Ω×]0, T [, (3.1)

u(x, 0) = u0(x) ∀x ∈ Ω , u(x, t) = 0 ∀0 ≤ t ≤ T , x ∈ Γin , (3.2)

with prescribed initial data u0 ∈ C0(Ω), and inflow boundary

Γin := {x ∈ ∂Ω : n(x) · a(x) < 0} ,

where n is the exterior unit normal vector field on ∂Ω.

Throughout this problem we assume ∥a∥ ≤ 1, where ∥·∥ designates the Euclidean norm of a
vector.

For the sake of discretization Ω will be equipped with a triangular mesh M = {K1, K2, . . . , KN},
whose set of edges will be denoted by E . An approximation of the solution u is sought in the space
S−1
0 (M) of piecewise constant functions on M. Throughout, the characteristic functions of the

mesh cells,

bjN(x) =

{
1 , if x ∈ Kj ,

0 elsewhere,
(3.3)

will serve as global shape functions. Their numbering will be induced by the numbering of the
mesh cells.

(3a) [I, 2 points]

Show that every continuous classical solution of (3.1) satisfies

∑
K∈M


∫
K

∂u

∂t
(x, t)wN(x) dx+

∫
∂K

a(x) · n(x)u(x) wN |K (x) dS = 0

 (3.4)

for all wN ∈ S−1
0 (M). Here, wN |K means that the value of wN on K has to used.

(3b) [I, 4 points]

If supp(u0) ⊂ B1 := {x ∈ R2 : ∥x∥ < 1}, div a = 0, and final time T = 1, find the minimal
R > 0 such that the (spatial) support of u(x, t) is contained in]−R,R[2 for all 0 ≤ t ≤ T .

HINT: Remember that ∥a(x)∥ ≤ 1 for all x.

For every pair (K, e), where K is a triangle of M, and e ∈ E is one of the edges of K, we define
the upwind numerical flux according to

FK
e (v, w) :=


a(me) · n∂K(me)v , if a(me) · n∂K(me) ≥ 0 ,

a(me) · n∂K(me)w , if a(me) · n∂K(me) < 0 and e ̸⊂ ∂Ω ,

0 , if a(me) · n∂K(me) < 0 and e ⊂ ∂Ω .

(3.5)

Exam Summer 2013 Page 6 Problem 3

Figure 3.1: Illustration for numerical flux.

Here me is the midpoint of e and n∂K is the exterior unit normal for K, see Figure 3.1.

Then the upwind finite volume spatial semi-discretization of (3.1) on M boils down to the varia-
tional problem: seek uN(t) ∈ S−1

0 (M) such that for all wN ∈ S−1
0 (M)

∑
K∈M

∫
K

∂uN

∂t
(x, t)wN(x) dx+

∑
e∈E,e⊂∂K

|e|FK
e (uN |K , uN |K+) wN |K

 = 0 , (3.6)

with |e| the length of the edge, FK
e from (3.5), and, given K and e ⊂ ∂K, K+ a formal notation

for the cell on the other side of e.

(3c) [I, 2 points]

At first glance (3.5) seems to be plagued by a failure to give a meaning to K+ in case e ⊂ ∂Ω.
Explain why this need not worry us.

(3d) [I, 5 points]

Now we want to tackle the implementation of the finite volume discretization in LehrFEM. To
that end implement a function

function nflux = uwfluxfn(Mesh,mu,Kidx,VHandle)

that returns a 3-vector of values FK
e (uN |K , uN

+
|K) for all three edges of the mesh cell with

number Kidx. The other arguments are

• Mesh: a LehrFEM mesh data structure complete with edge information, in particular the
Edge2Elem field

• mu: the coefficient vector of uN with respect to the global shape functions specified above
(numbering as in (3.3)),

• VHandle: function handle of type @(x) supplying the velocity field a (returns a column
vector).

You may use the LehrFEM function getNormals(Mesh, i) that returns a 2 × 3-matrix of
exterior unit normals for triangle number i.

Exam Summer 2013 Page 7 Problem 3

Using the basis of global shape functions as introduced above, (3.6) can be recast as an ordinary
differential equation

d

dt
µ⃗ = Bµ⃗ (3.7)

for the time-dependent coefficient vector of uM(x, t). Here B ∈ RN,N is a sparse, fixed matrix.

(3e) [I, 2 points]

Which entries of B from (3.7) are guaranteed to be zero regardless of the choice of the velocity
field a?

(3f) [3 points]

Express the potential non-zero entries of B from (3.7) by means of the upwind numerical fluxes
FK
e from (3.5).

(3g) [8 points]

Write an efficient LehrFEM function

function B = assemble Advec FV(Mesh,VHandle)

that computes the matrix B from (3.7) for a given mesh passed as extended LehrFEM mesh data
structure (with complete edge information) in Mesh and a velocity field provided by the function
handle VHandle.

HINT: You may use the function uwfluxfn from sub-problem (3d) in the spirit of sub-problem (3f).

(3h) [I, 4 points]

Implement a LehrFEM function

mufinal = solve Advec FV(Mesh,VHandle,U0Handle,M)

that solves the initial boundary value problem (3.1) by means of the upwind finite volume method
and the mesh passed as extended LehrFEM mesh data structure Mesh and returns an approxima-
tion for u(·, 1). The function handle arguments VHandle and U0Handle supply a and u0 as
functions defined on the domain covered by the mesh.

For timestepping use M equidistant timesteps of the the second-order Heun method (explicit
midpoint rule, [NPDE, Equation 8.4.6]), described by the Butcher scheme

0 0 0
1
2

1
2

0
0 1

. (3.8)

For the implementation you may rely on the LehrFEM function

mu0 = samplecenters(Mesh,U0Handle)

that returns a vector of point values of u0 at the centers of mesh cells.

HINT: Use the function assemble Advec FV from sub-problem (3k).

Exam Summer 2013 Page 8 Problem 3

(3i) [2 points] We want to use the function solve Advec FV from the previous sub-problem
for a sequence of meshes obtained by successive regular refinement. Why is it necessary to double
the number of timesteps each time we proceed to a finer mesh?

(3j) [I, 5 points]

For testing the method we choose Ω =]− 3, 3[, and

a(x) =

(
−x2

x1

)
, u0(x) =

{
cos2(π

∥∥x−
(
1
0

)∥∥) , if
∥∥x−

(
1
0

)∥∥ ≤ 1
2
,

0 elsewhere.
(3.9)

The functions are implemented in the MATLAB functions vfield and u0function. In addi-
tion, a MATLAB function uexact is given for the exact solution at time t = 1.

We use the upwind finite volume scheme discussed above on a sequence of meshes obtained by
the global regular refinement of an initial coarse mesh of Ω. We track the discrete error norm

∥u(·, 1)− uN(·, 1)∥2h :=
∑
K∈M

|K||(u− uN)(cK)|2 ,

where cK is the barycenter of K, and uN(·, 1) ∈ S−1
0 (M) is the approximate solution at final time

T = 1 produced by the upwind finite volume method on the mesh M combined with equidistant
timestepping with the explicit trapezoidal rule as implemented in solve Advec FV.

This norm can be computed by the supplied function error = errornorm(Mesh, mua,
mub), where mua and mub are vectors containing the values of the two functions u and uN at
the cell centers.

Augment the incomplete implementation of the MATLAB function test Adv FV so that it cre-
ates the doubly logarithmic (“loglog”) plot of ∥u(·, 1)− uN(·, 1)∥h versus the mesh-width dis-
played in Figure 3.2.

10
−1

10
−1

Meshwidth

E
rr

or

Figure 3.2: Error ∥u(·, 1)− uN(·, 1)∥h as a function of mesh-width h

(3k) [I, 2 points]

Describe in qualitative and quantitative terms the convergence of the method as observed in Fig-
ure 3.2.

HINT: The exact numbers can be found in Table 3.1.

Exam Summer 2013 Page 9 Problem 3

h ∥u− uN∥h
0.35355 0.25976
0.17678 0.19673
0.088388 0.13328
0.044194 0.081441

Table 3.1: Meshwidths and errors from Figure 3.2.

Problem 4 Stable Evaluation at a Point [42 points]
On a bounded domain Ω with polygonal connected boundary ∂Ω we consider the Dirichlet prob-
lem for the Laplace equation

∆u = 0 in Ω , u = g on ∂Ω , (4.1)

for a sufficiently smooth continuous function g : ∂Ω 7→ R.

From now on let x ∈ Ω be fixed. We are interested in an approximation of u(x), that is, we aim
for an approximate evaluation of the point value output functional

J(u) := u(x) . (4.2)

However, it is known that J is not continuous with respect to the energy norm associated with
(4.1), which denies us the fast convergence endowed by duality arguments.

As a starting point for a suitable modification of J we consider the function

Gx(y) = − 1

2π
log(∥x− y∥) , x ̸= y , (4.3)

and the two functionals on C0(Ω)

PSL(v) :=

∫
∂Ω

v(y)Gx(y) dS(y) , (4.4)

PDL(v) :=

∫
∂Ω

v(y)(gradGx)(y) · n(y) dS(y) , (4.5)

where n is the exterior unit normal vector field on ∂Ω.

The LehrFEM functions

function PSLval = PSL(Mesh,vhandle,x)
function PDLval = PDL(Mesh,vhandle,x)

evaluate PSL and PDL, respectively, for a triangulated polygonal domain. The parameter Mesh
passes an extended LehrFEM mesh data structure with complete edge information. It also de-
scribes the domain Ω. The function handle vhandle of type @(x) gives the argument function
v, and x is a 2-vector with the coordinates of x.

Exam Summer 2013 Page 10 Problem 4

(4a) [I, 8 points]

Implement the function

function PSLval = PSL(Mesh,vhandle,x)

The approximate evaluation of the integral should be done by means of the local midpoint rule
on the partitioning of ∂Ω induced by the mesh. For the implementation you can use the already
supplied function function Gval = G(x,y) that returns Gx(y); the input x is a row vector
of coordinates and y has to be a row vector or a matrix where each line contains the coordinates
of a point.

(4b) [I, 4 points]

Somebody contends that for a harmonic function u on Ω, that is, ∆u = 0, holds

u(x) = PSL(gradu · n)− PDL(u) . (4.6)

Complete the MATLAB script template point eval.m that provides evidence for this claim
for Ω =]0, 1[2, x =

(
0.3
0.4

)
, and u(x) = log(

∥∥x+
(
1
0

)∥∥), which satisfies ∆u = 0 in Ω. To do
so you should use the functions PSL and PDL for this u to evaluate the right hand side of (4.6)
approximately for a sequence of meshes obtained by global regular refinement. Then you should
plot the difference of both sides versus the mesh-width in a doubly logarithmic (’loglog’) plot.

HINT: For the implementation use the supplied functions

uval = u(x,varargin)
gradunval = gradun(x)

to evaluate respectively u and gradu · n in the point x.

The function PDL is available through the scrambled MATLAB file PDL.p.

(4c) [I, 4 points]

Assume that a function Ψ ∈ C2(Ω) is given with the following properties:

(P1) 0 ≤ Ψ ≤ 1;

(P2) Ψ ≡ 1 close to ∂Ω;

(P3) Ψ ≡ 0 in a ball around x.

By applying Green’s formula [NPDE, Thm. 2.4.7], show that, if ∆u = 0 in Ω,

PSL(gradu · n) =
∫
Ω

grad u(y) · grad(GxΨ)(y) dy . (4.7)

Note that GxΨ is a smooth function.

Exam Summer 2013 Page 11 Problem 4

(4d) [I, 6 points]

Appealing to the result (4.7) of sub-problem (4c), use Green’s formula [NPDE, Thm. 2.4.7] again
to establish

PSL(gradu · n) = −
∫
Ω

u(y) (2gradGx(y) · gradΨ(y) +Gx(y)∆Ψ(y)) dy

+ PDL(u) .

(4.8)

HINT: Recall the formula ∆(vw) = v∆w+2gradw ·grad v+w∆v and use that ∆Gx(y) = 0
for y ̸= x.

(4e) [I, 4 points]

From (4.8) and (4.6) we conclude that for the solution u of (4.1) we have the equivalent form of
the point evaluation functional

J(u) = J∗(u) := −
∫
Ω

u(y) (2gradGx(y) · gradΨ(y) +Gx(y)∆Ψ(y)) dy . (4.9)

Show that J∗ is continuous on H1
0 (Ω) with respect to the energy norm associated with (4.1).

(4f) [I, 8 points] We consider Ω =]0, 1[2 and know a priori that
∥∥x−

(
0.5
0.5

)∥∥ ≤ 1
4
. Hence,

independently of x we can choose

Ψ(y) =


0 , if

∥∥y −
(
0.5
0.5

)∥∥ ≤ 1
4

√
2 ,

cos2
(

π
1
2

√
2−1

(∥∥y −
(
0.5
0.5

)∥∥− 1
2

))
,

1 , if
∥∥y −

(
0.5
0.5

)∥∥ ≥ 1
2
.

(4.10)

which is in C2
pw(Ω).

This function is already implemented as

function [valPsi,gradPsi,laplPsi] = Psi(y) ,

which returns Ψ(y), gradΨ(y), and ∆Ψ(y).

Write a LehrFEM function

function val = Jstar(Mesh,mu,x)

that takes a LehrFEM mesh data structure for a triangular mesh of the square domain Ω =]0, 1[2,
the coefficient vector mu for a finite element function uN ∈ S0

1 (M) (w.r.t to the standard nodal
basis, of course), and the point coordinates x of x ∈ Ω as arguments and returns an approximation
of J∗(uN) from (4.9). Use the local quadrature rule P7O6() from the LehrFEM library for the
approximate evaluation of the integral in (4.9).

HINT: For the implementation you can use the two already supplied functions function Gval
= G(x,y) and function Ggradval = Ggrad(x,y) that return Gx(y) and gradGx(y)
respectively.

Exam Summer 2013 Page 12 Problem 4

(4g) [I, 4 points]

The supplied LehrFEM function function mu = Solve LaplDir LFE(M,GHandle)
solves (4.1) by means of piecewise linear Lagrangian finite elements on a triangular mesh passed
in the basic LehrFEM mesh data structure Mesh. The function handle GHandle gives the Dirich-
let data g. The finite element solution is returned in the form of its coefficient vector mu.

Use this function together with Jstar implemented in sub-problem (4f) to realize a MATLAB
function

function ux = stab point eval(Mesh,GHandle,x)

that uses the formula (4.8) together with a S0
1 (M)-Galerkin finite element solution of (4.1) on

Ω =]0, 1[2 to compute u(x). The point x must satisfy the assumptions of sub-problem (4f) and
its coordinates are passed in x.

(4h) [I, 4 points]

For Ω =]0, 1[2, x =
(
0.3
0.4

)
, and u(x) = log(

∥∥x+
(
1
0

)∥∥) examine numerically the convergence
of the value returned by stab point eval to u(x). To that end perform the evaluation on a
sequence of four meshes created by uniform regular refinement and plot the error on a doubly
logarithmic plot (’loglog’). Describe the convergence in a qualitatively and quantitatively way.

Implement a MATLAB script achieving this by completing the template in test peval cvg.m.
For the handle function for the Dirichlet boundary condition on you, remember that g = u|∂Ω on
∂Ω.

HINT: Use stab point eval from (4g).

References

[NPDE] Lecture Slides for the course “Numerical Methods for Partial Differential Equations”,
SVN revision # 56087.

[NCSE] Lecture Slides for the course “Numerical Methods for CSE”.

[LehrFEM] LehrFEM manual.

Exam Summer 2013 Page 13 REFERENCES

