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Duration: 3 hours.
Slightly harder sub-problems are marked with an asterisk symbol *.

Problem 1 Stationary Reaction-Diffusion problem [50 points]
Consider the two-dimensional domain Ω = (0, 1)2. Its boundary ∂Ω is divided into two parts: a
Dirichlet boundary ΓD and a Neumann boundary ΓN , i.e. ∂Ω = ΓD ∪ ΓN , with
ΓD = {(x, 0) ∈ R2, x ∈ (0, 1)}∪{(0, y) ∈ R2, y ∈ (0, 1)} and ΓN = {(x, 1) ∈ R2, x ∈ (0, 1)}∪
{(1, y) ∈ R2, y ∈ (0, 1)}. The domain is depicted in Fig. 1.1.

Figure 1.1: Domain for Problem 1.

On Ω we consider the PDE

−∆u(x) + c(x)u(x) = f(x) x ∈ Ω (1.1)
u|ΓD

(x) = g(x) x ∈ ΓD (1.2)

∂u

∂n

∣∣∣∣
ΓN

(x) = h(x) x ∈ ΓN , (1.3)

with n the outer unit normal to ΓN , f ∈ L2(Ω) and g, h continuous on ∂Ω.
The coefficient c = c(x) is uniformly positive and bounded in Ω.
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Figure 1.2: Reference triangle for subproblem (1f). The labels 1⃝, 2⃝ and 3⃝ denote the local
numbering of the vertices.

(1a) Write the variational formulation for (1.1), specifying the bilinear form and linear form.

HINT: Don’t forget to specify trial and test spaces.

(1b) Suppose now for this subtask that h = 0. Show that the solution to the variational formu-
lation in (1a) exists and it is unique.

HINT: Use Lax-Milgram Lemma.

(1c) Specify where in subproblem (1b) you used that the coefficient c = c(x) is uniformly
positive and bounded.

(1d) * Consider now the general case that h ̸= 0. Show that also in this case the solution exists
and is unique.

HINT: For a function v ∈ H1(Ω), the so-called trace inequality holds:

∥v∥2L2(∂Ω) ≤ C∥v∥L2(Ω)∥v∥H1(Ω), (1.4)

for a constant C > 0. In particular, this implies that

∥v∥L2(∂Ω) ≤ C̄∥v∥H1(Ω), (1.5)

with C̄ =
√
C.

In the following we consider a discretization of the variational formulation in subproblem (1a)
using linear finite elements.

(1e) Let λ̂j = λ̂j(x̂), j = 1, 2, 3, denote the shape functions for linear finite elements on the
reference element (see Fig.1.2). Write down the analytical expression for λ̂j = λ̂j(x̂), j = 1, 2, 3.

(1f) Consider a constant coefficient c = 1.
We want to compute the element matrix AK̂ (i.e. the matrix associated to the bilinear form when
restricted to an element) for the reference triangle K̂ depicted in Fig. 1.2. The PDE (1.1) suggests
that this matrix can be written as sum of two contributions: AK̂ = AK̂,1 + AK̂,2. Compute the
entries of the matrices AK̂,1 and AK̂,2.
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(1g) Consider now a generic triangle K with vertices a1, a2 and a3, considered as column
vectors and numbered counterclockwise. The element matrix AK for the triangle K is given by
AK = AK,1 +AK,2, with the part AK,1 associated to the diffusion term and the part AK,2 associa-
ted to the reaction term. Suppose again a constant coefficient c = 1.
Using the shape functions

{
λ̂j

}
j=1,2,3

and their gradients
{
∇̂λ̂j

}
j=1,2,3

on the reference element,

give an expression for a generic entry AK,1(i, j) of AK,1 and a generic entry AK,2(i, j) of AK,2

(i, j = 1, 2, 3).

(1h) Consider f = 0 and a generic h ̸= 0. Write the element load vector LK (i.e. the vector
associated to the linear form when restricted to an element) for a generic triangle K with vertices
a1, a2 and a3, considered as column vectors and numbered counterclockwise.
Use the one-dimensional trapezoidal quadrature rule to compute the boundary integrals; express
the element load vector in terms of the vertices a1, a2, a3 and function values of h.

HINT: You may use the notation

δij =

{
1 if eij ∈ ΓN

0 otherwise,

with eij denoting the edge connecting the vertices i and j, for i, j = 1, 2, 3.

(1i) We want to write the routine assemLoad LFE to assemble the load vector associated to
the linear form in subproblem (1a) in the case that h = 0 and f ̸= 0.
Let Mesh be the mesh data stucture complete with vertex, edge, element and boundary edge
information, let {x̂i}Ni=1 and {wi}Ni=1 be the nodes and weights for a quadrature formula on the
reference triangle, and let F be the function handle to f .
Given coords the 3 × 2 matrix containing the vertex coordinates of a generic triangle K (i.e.

coords=

aT
1

aT
2

aT
3

, with a1,a2,a3 as in the previous subtasks), the routine call

Lloc=LOAD LFE(coords,{x̂i}Ni=1, {wi}Ni=1, F )

computes the element load vector for the triangle K.
The following pseudocode is provided:

function L=assemLoad LFE(Mesh,{xi}Ni=1, {wi}Ni=1, F )
1: for i=1:nElements do
2: Extract global indices of element i → vidx
3: Extract coordinates of vertices vidx→ coords
4: Lloc=LOAD LFE(coords,{x̂i}Ni=1, {wi}Ni=1, F )
5: for j=1:3 do
6: L(vidx(j)) = Lloc(j)
7: end for
8: end for

This pseudocode contains an (algorithmic) error.
Where is the error? How should it be corrected?
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Figure 1.3: Convergence studies for subproblem (1l)

(1j) We want to compute the linear finite element solution uN to the variational formulation of
subproblem (1a) for the case that g ̸= 0.
Denote by NV the total number of mesh vertices and by NV,ΓD

the number of vertices which
are on the Dirichlet boundary ΓD. Let D be the array of length NV,D containing the indices of
the vertices which are on the Dirichlet boundary and FreeDofs the array of length NV − NV,D

containing the indices of all the other vertices, that is the vertices which are not on ΓD.
We denote by µ ∈ RNV the column vector containing the coefficients of uN with respect to

the basis functions associated to all the mesh vertices. Then we have µ =

(
µFreeDofs

µD

)
, with

µD ∈ RNV,D the coefficients with respect to the basis functions associated to nodes on ΓD, and
µFreeDofs ∈ RNV −NV,D the coefficients with respect to the remaining basis functions.
Assume that you have already assembled the stiffness matrix A ∈ RNV ,NV and the load vector
L ∈ RNV (considering all the mesh vertices as degrees of freedom).

(a) How should the vector µ be initialized?

(b) How should the right-hand side L be modified in order to take into account the Dirichlet
boundary conditions?

(c) Write down the algebraic system that has to be solved so that µ contains the values of uN in
all the mesh vertices.

(1k) Suppose that the solution u to (1.1) is smooth (for example, u ∈ C∞(R2)). Which
convergence orders for the L2- and H1- norms of the error do you expect when solving (1.1) with
linear finite elements?
* And when solving (1.1) using quadratic finite elements?
State the convergence orders in terms of the meshwidth h.

(1l) We solve (1.1) with linear and quadratic finite elements for the case that the exact solution
is uex(x) = (xy)

3
4 . The results of the convergence studies are shown in Fig. 1.3.

Why is there no gain in the convergence order when using quadratic finite elements?
Your statements must be supported by calculations.
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(1m) * We compute the solution to (1.1) using linear finite elements in the case that the exact
solution is uex(x) = x+ y. From the convergence study, we observe the following values:

h L2-error H1-error
0.2500 4.2043e-16 1.31832e-15
0.1250 9.47152e-16 3.34797e-15
0.0625 3.27805e-15 9.54326e-15
0.0312 4.12217e-15 1.68383e-14

Give a motivation for why the error is of the order of the machine precision for all the meshwidths
considered.

HINT: Consider the functional space to which uex belongs.

Problem 2 Stability property for the Poisson equation [10 points]
The aim of this problem is to better understand what does the stability mean for a differential
equation. We consider the Poisson equation with homogeneous Dirichlet boundary conditions:

−u′′(x) = f(x), ∀x ∈ Ω = (0, 1) (2.1)
u(0) = u(1) = 0.

for f ∈ C([0, 1]).

In applications the exact source term f(x) is not available. What is available is some perturbation
of it

f̃(x) = f(x) + η(x), (2.2)

where η(x) is some noise introduced, for example, by some measurement error.
Then, what can be actually computed is the solution ũ to the perturbed system

−ũ′′(x) = f̃(x), ∀x ∈ Ω = (0, 1) (2.3)
ũ(0) = ũ(1) = 0.

(2a) Show that

∥u− ũ∥∞ ≤ 1

8
∥f − f̃∥∞. (2.4)

HINT: From the lecture you know that any solution v to the Poisson equation (2.1) with right-
handside g satisfies the estimate

∥v∥∞ ≤ 1

8
∥g∥∞.

(2b) Consider now that we want to compute the solution to (2.3) numerically and denote by ũh

the discrete solution. We are interested in estimating how well ũh approximates the exact solution
u to the unperturbed problem (2.3).
Show that the following estimate holds:

∥u− ũh∥∞ ≤ 1

8
∥η∥∞ + ∥ũ− ũh∥∞. (2.5)

Note that here we are not making any assumption on the discretization scheme.
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Figure 2.1: Plots for subproblem (2c).

(2c) Suppose that η(x) = δ sin(2πx), for some δ > 0, so that

f̃ = f + δ sin(20πx). (2.6)

Let us consider δ = 10−1, 10−2, 10−3 and suppose that for each of these values we made a conver-
gence study for ũh considering the error ∥u− ũh∥∞. The convergence plots in doubly logarithmic
scale (loglog) are shown in Fig. 2.1.
Observe and compare the plots and comment the following questions:

• Why is there a plateau (flat region) for small mesh size h?

• How does the plateau change with δ? Why?

Problem 3 Finite difference method for the heat equation [15 points]
Let Ω := (0, 1) and consider a one-dimensional heat equation (an example of a parabolic PDE)
with homogeneous Dirichlet boundary conditions:

∂

∂t
u(x, t)− ∂2

∂x2
u(x, t) = 0 in (0, T ]× Ω, (3.1)
u(x, t) = 0 on (0, T ]× ∂Ω, (3.2)
u(x, 0) = u0(x) on {0} × Ω. (3.3)

(3a) Let E(t) denote the energy of the solution u(x, t) to (3.1) at time t, i.e.

E(t) :=
1

2

∫
Ω

(u(x, t))2dx. (3.4)

Prove, that solution u(x, t) to the above heat equation (3.1) satisfies the energy inequality, i.e.

E(t) ≤ E(0). (3.5)

HINT: Differentiate E(t) with respect to time t and then use (3.1) and integration by parts.

Next, we aim to discretize the above heat equation using central finite differences coupled with
an explicit time-stepping scheme.
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To discretize the spatial domain Ω = (0, 1), we subdivide the interval [0, 1] in N + 1 subintervals
using equispaced grid points {x0 = 0, x1, . . . , xN , xN+1 = 1}. Let us denote by h = |x1 − x0|
the mesh size. To discretize the time domain [0, T ], consider M ∈ N equispaced time points

t0 = 0, t1, . . . , tM = T,

and denote the time step size by ∆t := |tn+1 − tn| = T/M . Then, at a time point t = tn with
n = 0, . . . ,M − 1, the solution u(xj, t

n) at point xj and at time tn is denoted by Un
j .

Consider the following discretization scheme:

Un+1
j = Un

j −∆t
Un
j−1 − 2Un

j + Un
j+1

h2
, with ∆t = h. (3.6)

(3b) Show, that (3.6) is a consistent discretization of (3.1), i.e. that as h → 0, scheme (3.6)
approximates the continuous problem (3.1).

(3c) It is known that the scheme (3.6) produces solutions which blow up, i.e. the discrete
version of the energy inequality (3.5)

En ≤ E0 (3.7)

with

En =
1

2

N∑
j=1

(Un
j )

2 (3.8)

is violated. What is the reason for this blow up? What needs to be changed (no proof required) in
the discretization scheme (3.6) such that the discrete energy inequality (3.7) holds?

Problem 4 Transport in 1-D and Upwinded Finite Differences [15 points]
Consider the one-dimensional linear transport equation:

∂

∂t
u(x, t) + a(x)

∂

∂x
u(x, t) = 0, ∀(x, t) ∈ R× R+,

u(x, 0) = u0(x), ∀x ∈ R,
(4.1)

with coefficient a(x) given by

a(x) =


0 if x < 0,
x if 0 ≤ x < 1,
1 if 1 ≤ x.

(4.2)

(4a) * Write down the equation of characteristics of (4.1) and sketch characteristic curves in the
sub-domain [−1, 2] up to time t = 1. Use the equation of characteristics to derive an expression
for the exact solution of (4.1) in terms of initial data u0(x).

HINT: For the characteristics equation, do not forget to specify the initial conditions.

HINT: The solution to ODE of the form ∂x(t)
∂t

= αx(t) is given by x(t) = x(0) exp(αt) for α ̸= 0.

HINT: To find the characteristic curves with starting point 0 < x0 < 1 and to find the solution
u(x, t) with x > 0 and 1 + t > x, you will need to carefully analyze what happens at x = 1.
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(4b) Write down the upwind Finite Difference scheme, which approximates the solution u(x, t)
in (4.1) at points Un

j = u(xj, t
n) with j ∈ Z and n ∈ N. Here, . . . , xj−1, xj, xj+1, . . . denote the

mesh points (with a given uniform mesh width ∆x) and 0 = t0, t1, . . . denote the time instances.
Also, specify under which conditions on the mesh size ∆x and the time step size ∆t is the upwind
Finite Difference scheme stable.

Problem 5 Entropy Solutions for a Scalar Conservation Law [20 points]
We consider the Cauchy problem on R× (0, T ) for the scalar conservation law

∂

∂t
u(x, t) +

∂

∂x
f(u) = 0. (5.1)

with the flux f(u) = (u3)/3 and with initial condition u(x, 0) = u0(x), x ∈ R, satisfying

0 ≤ u0(x) ≤ 1, x ∈ R. (5.2)

(5a) Most of the examples in the lecture slides are for convex flux functions!
Determine the following:

• Is the flux function f(u) = (u3)/3 convex for all values of u ∈ R?

• Is the flux function f(u) = (u3)/3 convex for all values of u ∈ [0, 1]?
Is the convexity of f in the interval [0, 1] sufficient if we consider only initial data given in (5.2)?
Explain why.

(5b) Determine the entropy solutions of the Riemann problem with

(i) u0(x) =

{
0 for x ≤ 0,

1 for x > 0,
(ii) u0(x) =

{
1 for x ≤ 0,

0 for x > 0.

(5c) Now consider (5.1) in the domain D = (−1, 3) ⊂ R, with the flux function f(u) = (u2)/2
and the following initial conditions:

u(x, 0) =


−1, if 0 ≤ x,

1, if 0 < x < 1,

0, otherwise.
(5.3)

Three different numerical fluxes - Godunov, Roe and Lax-Friedrichs - were used to approximate
the solutions to (5.1) with (5.3) and “outflow” boundary conditions. The results at time T = 0.5
for 100 mesh cells and the convergence plots are depicted in Figure 5.1, where the solvers are
labeled using letters (a), (b), and (c).

Which letter corresponds to which numerical flux?
Explain your answer.
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Figure 5.1: Exact solutions and FVM approximations for the solution of (5.1) with (5.3).

Exam Summer 2014 Page 9 Problem 5


