Course 401-3663-00L: Numerical Methods for
Partial Differential Equations
Examination, Spring 2011

Prof. Ralf Hiptmair Dont't panic !
Good luck'!

Duration of examination: 180 minutes
Problem 1. (Convection-diffusion problem (55 points))

Fore > 0 we consider the one-dimensional convection diffusion fenmbon(2 =0, 1|

d*u  du .
—ew—kﬁzf(x) in]0,1] , u(0)=wu(l)=0. 1)

The following variational formulation has been suggested¥): seeku € H?(]0, 1]) such that

1

[ud g
edx dx dxv .

for allv € H?(]0,1[). Herea > 0 is a parameter.
(1a) (5 points) Show that a smooth solution &j vill also solve @).

(1b) (20 points) Compute the linear system of equations arismg the Galerkin finite element
discretization of 2) by means of piecewise linear Lagrangian finite elementsroacaidistant
grid with meshwidthh, := % N € N. Use the trapezoidal rule for the approximate evaluation of
the integrals.

(1c) (15 points) Write a MATLAB function
u = sol ve2pcdbvp(N, epsi | on, f _hd)
that solves 1) with the discretization introduced {db) using vV grid cells. The argumerit_hd

is a function handle of typ@ x) providing the functionf. The vectom is to return the values
of the finite element solution at the nodes of the mesh. Choose%o.

Hint. The functionsol ve2pcdbvpRef . p supplies a reference implementatiorsafl ve2pcdbvp.
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(1d) (15 points) Forf = 1, e = 0.01, create a suitable plot of the error norm

N-1

o) = (530 o wmp)

and use it to describe qualitatively and quantitativelydgbevergence of the method in this norm.
Hint. The exact solution in the cage= 1 is

u(r) =

exp(TH) — exp(—+¢)
exp(—1) — 1

Problem 2. (Enquist-Osher numerical flux (75 points))

We consider the following Cauchy problem for a scalar coreteom law

ou 0
o + e (u)=0 onRx]0,T[,

u(z,0) =up(x) VoreR,

wheref : R — R is the flux function.

)

The Cauchy problen3] should be solved by a fully discrete conservative finitaumod method
on an equidistant mesM = {|x;_,x;[: z; = jh,j € Z} with meshwidth2 > 0 combined
with explicit Euler timestepping. We rely on the 2-point Emj-Oshemnumerical flux

Frol(v,w) == 1(f(v) + f(w)) — 1 / IF e (4)

(2a) (5 points) Show that the Engquist-Osher flux is consistettt thie flux functionf.

(2b) (15 points) Show that the Engquist-Osher flux is monotone.

For the remainder of this problem consider the special &oic

f(u) := cosh(u) = %(e“ +e ™).

(2c) (10 points) Ifug is supported if0, 1] and—1 < ug(z) < 1 for all z € R, find the maximal
possible support of(-, t) for time¢ > 0, whereu(x, t) solves 8).

Hint. The flux functionf (u) = cosh(u) and its dervative are plotted in Fig).

(2d) (10 points) Determine the CFL-condition (maximal timeste@dunction of spatial mesh
width h) for the conservative finite volume method f@&) {ntroduced above, if it is known that
A<uy(x) < Bforallz e R,with A, B e R, A < B.

(2e) (10 points) Write a MATLAB function
nf = eonf (v, w)

that implements the Engquist-Osher numerical flux functigg according to 4) for the flux

f(u) = cosh(u).

Hint. A reference implementation is given asnf Ref .
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Figure 1: Graphs for flux functiofi(u) = cosh(u) (left) and f’(u) = sinh(u) (right)

(2f) (15 points) Complete the MATLAB function
ufinal = solveCP(a, b, N, u0,T)

in the filesol veCP. mthat solves the Cauchy probler8) with the conservative finite volume
method described above up to final tifie> 0. The computations should be done on the spatial
interval[a, b] on a grid with nodes; = a+%%(j—1), 7 =1,..., N. The row vectou0 passses
the cell averages af, and the scalaf the final time. Constant continuation @f outsidea, b]

is assumed. The row vectanf i nal returns the approximate cell averages.of 7). Use the
maximal timestep possible according to the CFL conditioa,(24).

(29) (10 points) Use the functiosiol veCP to solve @) for initial data

(2) 1 for0<x <1,
Ul T ) =
0 —1 elsewhere,

and final timel" = 1. Use[—1.2, 2.2] as computational interval and = 100. The cell avarages
of ug can be approximated by its values at the cell centers. Récapiproximate cell averages at
final time.

Hint. A reference implementation gfol veCP is provided asol veCPRef .

Problem 3. (Transport problem (65 points))

The MATLAB functions

data = sem Lagr set up(nesh, v_hd)
ul = sem Lagr _step(u0,tau, data)
implement the semi-Lagrangian discretization of the tiemsconvection-diffusion problem

u _ Au+v(x)-gradu =0 inQx]0,T7,

ot
u=0 ondx]0,T], (5)
u(x,0) =up(x), xe€Q,
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Here) c R?is a polygonal computational domain implicitly describedtbe LehrFEM mesh
data structure for a triangular mesW passed as theesh argument. The parameterhd
provides a handle to the continuous stationary velocityordeld v = v(x) (column vector !).

Using this information the functioseni Lagr _set up performs setup computations and stores
their results irdat a. The functionsem Lagr _st ep carries out a single timestep with timestep
sizeT > 0. The column vector argumenD passes the vertex values of a finite element function
€ S§7y(M) and the vertex values of the approximate solution after tinge returned in the
column vectoul. The numbering of vertices is given by their index in @@or di nat es field

of thermesh data structure.

(3a) (10 points) Use the two functions to sol& pn the unit disd? := {x € R? : ||z| < 1}

with
v(z) = ( ) , e,
T
and final time7l” = 27. To that end write a MATLAB function

ufinal = sol verot(u0_hd, N) ,

which relies onV uniform timesteps of the semi-Lagrangian method and re#disregular mesh
from G rcMesh. mat (use MATLAB’s | oad function to import theresh).

The argument0_hd is a handle to a real valued function énthat providesu,. The function
returns the values of the finite element solution at’7" and at interior vertices.

Hint. The supplied functiom dof = get _I nt _DOF( mesh) will give you the indices of the
interior vertices of the mesh.

(3b) (5 points) For a stationary velocity fielde (H'(Q2))? we consider the evolution problem

0 :
8_:: — Au+div(v(z)u) =0 inQx]0, T,
u=0 onoQx]0,T], 6)
uw(x,0) =up(x), €.
Convert it into an initial-boundary value problem for the PDE

% —Au+v(x) -gradu — c(x)u =0, ()

with suitable coefficient function: 2 — R, which is to be stated in terms of

Hint. Apply the product rule teliv(v u).

(3c) (15 points) Which evolution problems (over small time intdsy have to be solved in
each step, when split-step timestepping based osttang splittingis applied to the evolution
problem

Ou = Au—v(x)- -gradu+c(z)u inQx]0,T],
ot N ~ 7 N=—
—g(u) —h(u) )
u=0 onoNx|0,7T7,

u(x,0) =ug(x), €.
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Here the decomposition of the right-hand side of the PDEceigid by the underbraces defines
the splitting to be used. The timestep size should be deryted> 0.

(3d) (20 points) Write a MATLAB function
ul = reaction._step(nmesh, u0, tau, c_hd)

that solves the variational evolution problem: seek uy(t) € S? (M)
8uN 0
— oyde = c(m)uN vydx Vuy € 81 y(M), 9)

over one timestep of length> 0 using the explicit midpoint rule, a 2-stage explicit Rungetis
method described by the Butcher scheme

0]0 O
3l 0 . (10)
01

The integrals in 10) should be approximated by means of the local vertex basadrgture rule
(“2D trapezoidal rule”).

The argumentresh should pass a LehrFEM mesh data structure. The column we@toontains
the nodal values foty before the timestepyl those after the timeste _hd is the function
handle forc = c(x).

Hint. Again use the functiondof = get _| nt _DOF( nesh) to find the indices of the interior
vertices.

(3e) (15 points) Implement a MATLAB function
ufinal = solvetrp(nmesh,v_hd, c_.hd, u0_hd, N) ,

which relies onV uniform steps of the Strang-splitting split-step methatdssed if3c)to solve

(8) approximately withI” = 1. The parametev provides a handle to the continuous stationary
velocity vector fieldv = v(x) (column vector !) anad _hd a handle ta: = c(x) . The argument
u0_hd is a handle to a real valued function Qrthat provides.

Hint. Use the functionsem Lagr _set up (once in the beginning)sem Lagr st ep and
reacti on_st ep. For the latter function a reference implementation is gled in

reacti on_stepRef. p. Pay attention to an efficient “leapfrog-style” implemeiua of the
Strang-splitting.
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