
Course 401-3663-00L: Numerical Methods for
Partial Differential Equations
Examination, Spring 2011

Prof. Ralf Hiptmair Dont’t panic !
Good luck !

Duration of examination: 180 minutes

Problem 1. (Convection-diffusion problem (55 points))

For ǫ > 0 we consider the one-dimensional convection diffusion problem onΩ =]0, 1[

−ǫ
d2u

dx2
+

du

dx
= f(x) in ]0, 1[ , u(0) = u(1) = 0 . (1)

The following variational formulation has been suggested for (1): seeku ∈ H2(]0, 1[) such that

1∫

0

ǫ
du

dx

dv

dx
+

du

dx
v dx

+u(0)v(0)+ǫ

(
du

dx
(0)v(0) −

du

dx
(1)v(1) + u(0)

dv

dx
(0) − u(1)

dv

dx
(1) + αu(0)v(0) + αu(1)v(1)

)

=

1∫

0

fv dx , (2)

for all v ∈ H2(]0, 1[). Hereα > 0 is a parameter.

(1a) (5 points) Show that a smooth solution of (1) will also solve (2).

(1b) (20 points) Compute the linear system of equations arising from the Galerkin finite element
discretization of (2) by means of piecewise linear Lagrangian finite elements on an equidistant
grid with meshwidthh := 1

N
, N ∈ N. Use the trapezoidal rule for the approximate evaluation of

the integrals.

(1c) (15 points) Write a MATLAB function

u = solve2pcdbvp(N,epsilon,f hd)

that solves (1) with the discretization introduced in(1b) usingN grid cells. The argumentf hd
is a function handle of type@(x) providing the functionf . The vectoru is to return the values
of the finite element solution at the nodes of the mesh. Chooseα = 10

h
.

Hint. The functionsolve2pcdbvpRef.p supplies a reference implementation ofsolve2pcdbvp.
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(1d) (15 points) Forf ≡ 1, ǫ = 0.01, create a suitable plot of the error norm

err(N) =

(
1

N

∑N−1

j=1
|(u − uN)(jh)|2

)1/2

and use it to describe qualitatively and quantitatively theconvergence of the method in this norm.

Hint. The exact solution in the casef ≡ 1 is

u(x) = x +
exp(x−1

ǫ
) − exp(−1

ǫ
)

exp(−1
ǫ
) − 1

.

Problem 2. (Enquist-Osher numerical flux (75 points))

We consider the following Cauchy problem for a scalar conservation law

∂u

∂t
+

∂

∂x
f(u) = 0 onR×]0, T [ ,

u(x, 0) = u0(x) ∀x ∈ R ,

(3)

wheref : R 7→ R is the flux function.

The Cauchy problem (3) should be solved by a fully discrete conservative finite volume method
on an equidistant meshM = {]xj−1, xj[: xj = jh, j ∈ Z} with meshwidthh > 0 combined
with explicit Euler timestepping. We rely on the 2-point Enquist-Oshernumerical flux

FEO(v, w) := 1
2
(f(v) + f(w)) − 1

2

∫ w

v

|f ′(ξ)| dξ . (4)

(2a) (5 points) Show that the Engquist-Osher flux is consistent with the flux functionf .

(2b) (15 points) Show that the Engquist-Osher flux is monotone.

For the remainder of this problem consider the special choice

f(u) := cosh(u) =
1

2
(eu + e−u) .

(2c) (10 points) Ifu0 is supported in[0, 1] and−1 ≤ u0(x) ≤ 1 for all x ∈ R, find the maximal
possible support ofu(·, t) for time t > 0, whereu(x, t) solves (3).

Hint. The flux functionf(u) = cosh(u) and its dervative are plotted in Fig.1

(2d) (10 points) Determine the CFL-condition (maximal timestep as a function of spatial mesh
width h) for the conservative finite volume method for (3) introduced above, if it is known that
A ≤ u0(x) ≤ B for all x ∈ R, with A,B ∈ R, A < B.

(2e) (10 points) Write a MATLAB function

nf = eonf(v,w)

that implements the Engquist-Osher numerical flux functionFEO according to (4) for the flux
f(u) = cosh(u).

Hint. A reference implementation is given aseonfRef.
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Figure 1: Graphs for flux functionf(u) = cosh(u) (left) andf ′(u) = sinh(u) (right)

(2f) (15 points) Complete the MATLAB function

ufinal = solveCP(a,b,N,u0,T)

in the filesolveCP.m that solves the Cauchy problem (3) with the conservative finite volume
method described above up to final timeT > 0. The computations should be done on the spatial
interval[a, b] on a grid with nodesxj = a+ b−a

N
(j− 1

2
), j = 1, . . . , N . The row vectoru0 passses

the cell averages ofu0 and the scalarT the final time. Constant continuation ofu0 outside[a, b]
is assumed. The row vectorunfinal returns the approximate cell averages ofu(·, T ). Use the
maximal timestep possible according to the CFL condition, see (2d).

(2g) (10 points) Use the functionsolveCP to solve (3) for initial data

u0(x) =

{

1 for 0 < x ≤ 1 ,

−1 elsewhere,

and final timeT = 1. Use[−1.2, 2.2] as computational interval andN = 100. The cell avarages
of u0 can be approximated by its values at the cell centers. Plot the approximate cell averages at
final time.
Hint. A reference implementation ofsolveCP is provided assolveCPRef.

Problem 3. (Transport problem (65 points))

The MATLAB functions

data = semiLagr setup(mesh,v hd)
u1 = semiLagr step(u0,tau,data)

implement the semi-Lagrangian discretization of the transient convection-diffusion problem

∂u

∂t
− ∆u + v(x) · gradu = 0 in Ω×]0, T [ ,

u = 0 on∂Ω×]0, T [ ,

u(x, 0) = u0(x) , x ∈ Ω ,

(5)
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HereΩ ⊂ R
2 is a polygonal computational domain implicitly described by the LehrFEM mesh

data structure for a triangular meshM passed as themesh argument. The parameterv hd
provides a handle to the continuous stationary velocity vector fieldv = v(x) (column vector !).

Using this information the functionsemiLagr setup performs setup computations and stores
their results indata. The functionsemiLagr step carries out a single timestep with timestep
sizeτ > 0. The column vector argumentu0 passes the vertex values of a finite element function
∈ S0

1,0(M) and the vertex values of the approximate solution after timeτ are returned in the
column vectoru1. The numbering of vertices is given by their index in theCoordinates field
of themesh data structure.

(3a) (10 points) Use the two functions to solve (5) on the unit discΩ := {x ∈ R
2 : ‖x‖ ≤ 1}

with

v(x) =

(
−x2

x1

)

, x ∈ Ω .

and final timeT = 2π. To that end write a MATLAB function

ufinal = solverot(u0 hd,N) ,

which relies onN uniform timesteps of the semi-Lagrangian method and reads atriangular mesh
from CircMesh.mat (use MATLAB’s load function to import themesh).

The argumentu0 hd is a handle to a real valued function onΩ that providesu0. The function
returns the values of the finite element solution att = T and at interior vertices.

Hint. The supplied functionidof = get Int DOF(mesh) will give you the indices of the
interior vertices of the mesh.

(3b) (5 points) For a stationary velocity fieldv ∈ (H1(Ω))2 we consider the evolution problem

∂u

∂t
− ∆u + div(v(x)u) = 0 in Ω×]0, T [ ,

u = 0 on∂Ω×]0, T [ ,

u(x, 0) = u0(x) , x ∈ Ω .

(6)

Convert it into an initial-boundary value problem for the PDE

∂u

∂t
− ∆u + v(x) · grad u − c(x)u = 0 , (7)

with suitable coefficient functionc : Ω 7→ R, which is to be stated in terms ofv.

Hint. Apply the product rule todiv(v u).

(3c) (15 points) Which evolution problems (over small time intervals) have to be solved in
each step, when split-step timestepping based on theStrang splittingis applied to the evolution
problem

∂u

∂t
= ∆u − v(x) · gradu

︸ ︷︷ ︸

=:g(u)

+ c(x)u
︸ ︷︷ ︸

=:h(u)

in Ω×]0, T [ ,

u = 0 on∂Ω×]0, T [ ,

u(x, 0) = u0(x) , x ∈ Ω .

(8)
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Here the decomposition of the right-hand side of the PDE indicated by the underbraces defines
the splitting to be used. The timestep size should be denotedby τ > 0.

(3d) (20 points) Write a MATLAB function

u1 = reaction step(mesh,u0,tau,c hd)

that solves the variational evolution problem: seekt 7→ uN(t) ∈ S0
1,0(M)

∫

Ω

∂uN

∂t
vNdx =

∫

Ω

c(x)uN vN dx ∀vN ∈ S0
1,0(M) , (9)

over one timestep of lengthτ > 0 using the explicit midpoint rule, a 2-stage explicit Runge-Kutta
method described by the Butcher scheme

0 0 0
1
2

1
2

0
0 1

. (10)

The integrals in (10) should be approximated by means of the local vertex based quadrature rule
(“2D trapezoidal rule”).

The argumentmesh should pass a LehrFEM mesh data structure. The column vectoru0 contains
the nodal values foruN before the timestep,u1 those after the timestep.c hd is the function
handle forc = c(x).

Hint. Again use the functionidof = get Int DOF(mesh) to find the indices of the interior
vertices.

(3e) (15 points) Implement a MATLAB function

ufinal = solvetrp(mesh,v hd,c hd,u0 hd,N) ,

which relies onN uniform steps of the Strang-splitting split-step method discussed in(3c)to solve
(8) approximately withT = 1. The parameterv provides a handle to the continuous stationary
velocity vector fieldv = v(x) (column vector !) andc hd a handle toc = c(x) . The argument
u0 hd is a handle to a real valued function onΩ that providesu0.

Hint. Use the functionssemiLagr setup (once in the beginning),semiLagr step and
reaction step. For the latter function a reference implementation is provided in
reaction stepRef.p. Pay attention to an efficient “leapfrog-style” implementation of the
Strang-splitting.
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