Course 401-3663-00L: Numerical Methods for
Partial Differential Equations
Examination, Spring 2012

. Dont’t panic!
Prof. Philipp Grohs Good luck !

Duration of examination: 180 minutes

Problem 1. (CFL-condition)

We consider the Cauchy problem for the one-dimensionalliadeection equation:(€ R)
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u(z,0) =up(x) VreR.

(1)

We compute approximatiory$§k) ~ u(jh, k) on an equidistant space-time mesh with spatial
meshwidthh > 0 and uniform timestep > 0 by means of the discrete evolution

1 = Y = e = 5 = der(t = en (T = 2+ ) @)
with y := I,k € N, j € Z, with initial valuesy\” := uo(jh), j € Z.
(1a) (2 points) What is a Cauchy problem?
(1b) (5 points) Using the notatiog®) := <M§k))jez’ (2) is equivalent to
g =cEt), 3)
with a linear operator
0
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with suitablec_,, c_1, ¢y € R. Determine the coefficients o, c_1, ¢o.
(1c) (15 points) For givel € C, ¢ € R, determine\(¢) € C such that
£ ((exp(€))ez) = MEEXP(E))) e - (5)
Hint: » stands for the imaginary uni2 = —1. Use the fundamental property of the exponential

functionexp(a + b) = exp(a) exp(b).

(1d) (5 points) Compute analytically the solution of the discretelution @) for uy(z) =
exp(€x), £ € C.

Hint: Use 6).



(1e) (5 points) Show that forr = 2.1h solutions of @) can suffer a blow-up

; (k) _
R T =00 ©

Hint: Plot |A(§)| for —m < & < .

(2f) (10 points) Give a (geometric) argument why the CFL conditiorn< 24 is necessary to
have convergenqe%v) — u(1,3), whenj := 7 is kept fixed andh := % — 0, N eN.

Problem 2. (Radiative cooling)

The evolution of the temperature distributior= u(x) in a homogeneous “2D body” (occupying
the space? c RR?) with radiative cooling is modelled by the linear parabafitial-boundary
value problem

%—AUZO ian[O,T},

u(x,0) = up(x) InQ,
with v > 0.

(2a) (13 points) Derive the spatial variational formulation {@). Do not forget to specify the
function spaces. Compute exactly the mass matrix and theksgalaatrix for the unit triangle
(with vertices(0,0), (1,0) and(0, 1)). Assume that the-axis forms part oP2.

(2b) (15 points) For the spatial Galerkin discretization Bf\We employ linear finite elements
on a triangular mestM of Q) (FE spaceS?(M)) with polygonal boundary approximation. All
integrals are evaluated by local vertex based quadratumraufas (the trapezoidal rule).

Implement a MATLAB function
[ M A] = get Mat LFE( mesh, gammm)

that computes the matricdd, A € R™" for the semi-discrete evolution

d -
M i(t) + Aji(t) = 0 ()

resulting from the finite element discretization @j,(when standard nodal bassis functions are
used. Here, the argumemesh passes a LehrFEM mesh data structure,ganaima supplies the
value of~.

To facilitate the implementation, a MATLAB template is prd®d inget Mat LFE. mwhich al-
ready computes the stiffness matrix foA. A reference file is provided aget Mat LFERef . p.
The flag for Robin boundary conditions-4..

(2c) (20 points) Implement a MATLAB function

mufi nal = RadTEvl (u0, gamma, nesh, m



that carries outn uniform timesteps of the L-stable SDIRK-2 implicit 2-stagenga-Kutta
method with Butcher scheme
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in order to solve 7) over the time interval0, 1]. The finite element Galerkin discretization from
sub-problen(2b)is used in space. The argumertt is a column vector that passes the values of
the initial temperature distribution in the vertices of thesh. The return value provides the basis
coefficients of the approximation af -, 1). This function will be called within the driver routine
driver evl.m

A MATLAB template is provided irRad TEvIl . m and a reference implementatiorRadTEv| Ref . p.

(2d) (10 points) Write a MATLAB function
avg = | feavg(u, nesh)

that computeg, u dx for v € S(M). The argument passes the coefficients ofw.r.t. the
standard nodal basis 6 (M), while mesh contains a LehrFEM mesh data structure.

Hint. A reference implementation is providedlalseavgRef (Filel f eavgRef . p).

(2e) (8 points) For the evolution problenT)on © =]0, 1[? track the behavior of the thermal
energy

Blt) = /Q w(z, 1) da (10)

over the period0,7] for uo = 1, v = 1. Use the fully discrete evolution implemented in
RadTEvl and extend it to

[ mufinal , E] = RadTEvl (u0, gamma, nmesh, nm) ,
whereE returns approximations faf (¢,) for k£ = 0,...,m (¢, are the points of the equidistant

temporal grid).

Extend the MATLAB scriptdr i ver _evl . mto plot the approximation foF/(¢) that you have
computed as a function offor m = 100 and the mesh supplied in the fée| nesh. mat .

Hint: The plot you should get is depicted in Figure

Problem 3. (Best approximation in ?)

Given a triangular mesiM of Q C R9, d = 1,2, 3, we consider the minimization problem

uy = argmin / |f —on|?da | (11)
’UNES?(M) Q

wheref € L*(Q).
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Figure 1: Result of sub-proble(@e)

(3a) (8 points) Show thatl(1) is a minimization problem for a quadratic functional of fbem
J(v) = 3a(v,v) — £(v) + ¢ with a bilinear forma and a linear fornt andc € R. Write down the
concrete expressions farand/ in the case of11).

(3b) (4 points) Argue why the minimization problerhd) has a unique solution.

(3c) (8 points) State the linear variational problem that is egjeint to (1). Do not forget to
specify the right function spaces.

(3d) (4 points) Now and for all sub-problems below we always odeisf2 =|0, 1], that is,
d = 1, and an equidistant mestt with meshwidth» = <, N € N. What is the dimension of
SY(M) is this case?

(3e) (10 points) In the setting of3d), compute the Galerkin matrix for the linear variational
problem from(3c), when the standard global shape functions (“tent functjoofs SY(M) are
used and numbered from left to right.

(3f) (15 points) Assume the setting (&d). Write a MATLAB routine
phi = rhsL2(xi, N)

that computes the right hand side vector for the discretatamnal problem fron{3c) for

1 f 1
flo) = ore<w<l, o1, (12)
0 elsewhere

Of course, the standard “tent function” basis9f M) is to be used with numbering from left to
right.

Hint. For a reference implementation refertbsL2Ref .

(30) (10 points) Write a MATLAB function

u = get best app(xi, N

4



that solves 11) for f from (12) and returns the coefficients afy with respect to the “tent func-
tion” basis.

Hint. A reference implementation is availableget best _appRef .

(3h) (10 points) Implement a MATLAB function
diff = 12dist(xi,uN N

that computes f — UNHLQ(Q) for f from (12) (characterized by paramet€randuy € SY(M)
described by its basis coefficients in the veatbt

Hint. A reference implementation is supplied bgdi st Ref . The integral of the square of a
linear function that takes valuésand HA at the endpoints of an interval of lengthis L(V? +
H? + (V + H)?%). Itis useful to do this computation in an auxiliary function

(31)) (15 points) Fot = %\/5 choosef according to12). Then, forN = 10, 20, 40, 80, 160, 320, 640
compute

min /|f—vN|2d:1:,
) Ja

UNES?(M

and plot its square root versus in a suitable scale. Based on your observations characterize
qualitatively and quantitively thé/-asymptotic behavior of thé?(2)-best approximation error
of SY(M) for that particularf.
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