
Course 401-3663-00L: Numerical Methods for
Partial Differential Equations
Examination, Spring 2012

Prof. Philipp Grohs Dont’t panic !
Good luck !

Duration of examination: 180 minutes

Problem 1. (CFL-condition)

We consider the Cauchy problem for the one-dimensional linear advection equation (c ∈ R)

∂u

∂t
+ c

∂u

∂x
= 0 onR × [0, T ] ,

u(x, 0) = u0(x) ∀x ∈ R .

(1)

We compute approximationsµ(k)
j ≈ u(jh, kτ) on an equidistant space-time mesh with spatial

meshwidthh > 0 and uniform timestepτ > 0 by means of the discrete evolution

µ
(k)
j = µ

(k−1)
j − cγ(µ

(k−1)
j − µ

(k−1)
j−1 ) − 1

2
cγ(1 − cγ)(µ

(k−1)
j − 2µ

(k−1)
j−1 + µ

(k−1)
j−2 ) , (2)

with γ := τ
h
, k ∈ N, j ∈ Z, with initial valuesµ(0)

j := u0(jh), j ∈ Z.

(1a) (2 points) What is a Cauchy problem?

(1b) (5 points) Using the notation~µ(k) := (µ
(k)
j )

j∈Z
, (2) is equivalent to

~µ(k) = L(~µ(k−1)) , (3)

with a linear operator

L : C
Z 7→ C

Z , (L~µ)j :=
0

∑

ℓ=−2

cℓµj+ℓ , j ∈ Z , (4)

with suitablec−2, c−1, c0 ∈ R. Determine the coefficientsc−2, c−1, c0.

(1c) (15 points) For givenξ ∈ C, c ∈ R, determineλ(ξ) ∈ C such that

L

(

(exp(ıξj))j∈Z

)

= λ(ξ)(exp(ıξj))j∈Z
. (5)

Hint: ı stands for the imaginary unit,ı2 = −1. Use the fundamental property of the exponential
functionexp(a + b) = exp(a) exp(b).

(1d) (5 points) Compute analytically the solution of the discreteevolution (2) for u0(x) =
exp(ıξx), ξ ∈ C.

Hint: Use (5).
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(1e) (5 points) Show that forcτ = 2.1h solutions of (2) can suffer a blow-up

lim
k→∞

max
j∈Z

u
(k)
j = ∞ . (6)

Hint: Plot |λ(ξ)| for −π ≤ ξ ≤ π.

(1f) (10 points) Give a (geometric) argument why the CFL conditioncτ ≤ 2h is necessary to
have convergenceµ(N)

N → u(1, β), whenβ := τ
h

is kept fixed andh := 1
N

→ 0, N ∈ N.

Problem 2. (Radiative cooling)

The evolution of the temperature distributionu = u(x) in a homogeneous “2D body” (occupying
the spaceΩ ⊂ R

2) with radiative cooling is modelled by the linear parabolicintial-boundary
value problem

∂u

∂t
− ∆u = 0 in Ω × [0, T ] ,

−grad u · n = γu on∂Ω × [0, T ] ,

u(x, 0) = u0(x) in Ω ,

(7)

with γ > 0.

(2a) (13 points) Derive the spatial variational formulation for(7). Do not forget to specify the
function spaces. Compute exactly the mass matrix and the Galerkin matrix for the unit triangle
(with vertices(0, 0), (1, 0) and(0, 1)). Assume that thex-axis forms part of∂Ω.

(2b) (15 points) For the spatial Galerkin discretization of (7) we employ linear finite elements
on a triangular meshM of Ω (FE spaceS0

1 (M)) with polygonal boundary approximation. All
integrals are evaluated by local vertex based quadrature formulas (the trapezoidal rule).

Implement a MATLAB function

[M,A] = getMatLFE(mesh,gamma)

that computes the matricesM,A ∈ R
N,N for the semi-discrete evolution

M
d

dt
~µ(t) + A~µ(t) = 0 (8)

resulting from the finite element discretization of (7), when standard nodal bassis functions are
used. Here, the argumentmesh passes a LehrFEM mesh data structure, andgamma supplies the
value ofγ.

To facilitate the implementation, a MATLAB template is provided ingetMatLFE.m which al-
ready computes the stiffness matrix for−∆. A reference file is provided asgetMatLFERef.p.
The flag for Robin boundary conditions is-1.

(2c) (20 points) Implement a MATLAB function

mufinal = RadTEvl(u0,gamma,mesh,m)
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that carries outm uniform timesteps of the L-stable SDIRK-2 implicit 2-stage Runge-Kutta
method with Butcher scheme

λ λ 0
1 1 − λ λ

1 − λ λ

λ := 1 − 1
2

√
2 , (9)

in order to solve (7) over the time interval[0, 1]. The finite element Galerkin discretization from
sub-problem(2b) is used in space. The argumentu0 is a column vector that passes the values of
the initial temperature distribution in the vertices of themesh. The return value provides the basis
coefficients of the approximation ofu(·, 1). This function will be called within the driver routine
driver evl.m.

A MATLAB template is provided inRadTEvl.m, and a reference implementation inRadTEvlRef.p.

(2d) (10 points) Write a MATLAB function

avg = lfeavg(u,mesh)

that computes
∫

Ω
u dx for u ∈ S0

1 (M). The argumentu passes the coefficients ofu w.r.t. the
standard nodal basis ofS0

1 (M), whilemesh contains a LehrFEM mesh data structure.

Hint. A reference implementation is provided aslfeavgRef (File lfeavgRef.p).

(2e) (8 points) For the evolution problem (7) on Ω =]0, 1[2 track the behavior of the thermal
energy

E(t) =

∫

Ω

u(x, t) dx (10)

over the period[0, T ] for u0 ≡ 1, γ = 1. Use the fully discrete evolution implemented in
RadTEvl and extend it to

[mufinal,E] = RadTEvl(u0,gamma,mesh,m) ,

whereE returns approximations forE(tk) for k = 0, . . . ,m (tk are the points of the equidistant
temporal grid).

Extend the MATLAB scriptdriver evl.m to plot the approximation forE(t) that you have
computed as a function oft for m = 100 and the mesh supplied in the fileevlmesh.mat.

Hint: The plot you should get is depicted in Figure1.

Problem 3. (Best approximation in L2)

Given a triangular meshM of Ω ⊂ R
d, d = 1, 2, 3, we consider the minimization problem

uN = argmin
vN∈S0

1
(M)

∫

Ω

|f − vN |2 dx , (11)

wheref ∈ L2(Ω).
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Figure 1: Result of sub-problem(2e)

(3a) (8 points) Show that (11) is a minimization problem for a quadratic functional of theform
J(v) = 1

2
a(v, v)− ℓ(v) + c with a bilinear forma and a linear formℓ andc ∈ R. Write down the

concrete expressions fora andℓ in the case of (11).

(3b) (4 points) Argue why the minimization problem (12) has a unique solution.

(3c) (8 points) State the linear variational problem that is equivalent to (11). Do not forget to
specify the right function spaces.

(3d) (4 points) Now and for all sub-problems below we always consider Ω =]0, 1[, that is,
d = 1, and an equidistant meshM with meshwidthh = 1

N
, N ∈ N. What is the dimension of

S0
1 (M) is this case?

(3e) (10 points) In the setting of(3d), compute the Galerkin matrix for the linear variational
problem from(3c), when the standard global shape functions (“tent functions”) of S0

1 (M) are
used and numbered from left to right.

(3f) (15 points) Assume the setting of(3d). Write a MATLAB routine

phi = rhsL2(xi,N)

that computes the right hand side vector for the discrete variational problem from(3c) for

f(x) =

{

1 for ξ < x < 1 ,

0 elsewhere
, 0 < ξ < 1 . (12)

Of course, the standard “tent function” basis ofS0
1 (M) is to be used with numbering from left to

right.

Hint. For a reference implementation refer torhsL2Ref.

(3g) (10 points) Write a MATLAB function

u = get best app(xi,N)
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that solves (11) for f from (12) and returns the coefficients ofuN with respect to the “tent func-
tion” basis.

Hint. A reference implementation is available asget best appRef.

(3h) (10 points) Implement a MATLAB function

diff = l2dist(xi,uN,N)

that computes‖f − uN‖L2(Ω) for f from (12) (characterized by parameterξ) anduN ∈ S0
1 (M)

described by its basis coefficients in the vectoruN.

Hint. A reference implementation is supplied byl2distRef. The integral of the square of a
linear function that takes valuesV andHÂ at the endpoints of an interval of lengthL is L(V 2 +
H2 + (V + H)2). It is useful to do this computation in an auxiliary function.

(3i) (15 points) Forξ = 1
2

√
2 choosef according to (12). Then, forN = 10, 20, 40, 80, 160, 320, 640

compute

min
vN∈S0

1
(M)

∫

Ω

|f − vN |2 dx ,

and plot its square root versusN in a suitable scale. Based on your observations characterize
qualitatively and quantitively theN -asymptotic behavior of theL2(Ω)-best approximation error
of S0

1 (M) for that particularf .
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