Course 401-0674-00L: Numerical Methods for
Partial Differential Equations
Examination, 22.01.2013

Prof. Ralf Hiptmair Dont't panic !
Good luck'!

Duration of examination: 180 minutes

The total number of points is 250, the maximum grade can beaath with 170, passing
requires 85. Please pay attention to the number of pointsdaddor each (sub-)task. It
roughly correlated with the amount of information your aeswhould contain. For addi-
tional information see the examination instruction sheet.

n

Problem 1. Finite volume method for scalar conservation law [70 points]

We consider the Cauchy problem Bnx|0, 7'[ for the scalar conservation law

ou 0 .
En + g sin(mu) =0 . (1)

with initial conditionu(x,0) = ug(z), € R, satisfying
0<up(zx) <1, zeR. 2

WARNING: The flux functionsin(7u) is concave on [0, 1]. Most of the examples in the lecture
slides are foconvex flux functions!

(1a) [5points] Determine the entropy solutions of the Riemann problem with

() UO(I):{O forx <0, i) uo(x):{l forx <0,

1 forx>0 0 forz>0,

(1b) [5 points] Assumesupp(ug) C [0,1] and (2). Describe the maximal support of the
solutionu of (1) in thex-t-plane.

(1c) [10points] Write a MATLAB function
function flux = sinegodflux(v,w)
that implements the Godunov numerical fligp (u, v) = f(u'(v,w)) for (1) under the assump-
tion0 < wv,w < 1.
HINT: Note that the flux functiorf (u) = sin(7u) is concave ono0, 1].

HINT: Forreference a scrambled versiorsofnegodf | ux is available irsi negodf | ux_ref. p.
It is vector-safe in the sense that you can pass vegtarsdw and the result will be a vector of
valuesFgp (v, w).
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(1d) [5points] For the spatial semi-discretization of (1) we use a finiteirgd method on an
equidistant spatial mesh covering the interivab, 6]. We rely on the Godunov flux and assume
thatu = 0 outside this interval for all relevant times.

Devise a MATLAB function
function rhs = sinecl aw hs(nu)

that realizes the right hand side of the ODE, namely the agwa

_% (F(p, ftj1) — Fpj—1, 1))

arising from this finite volume semi-discretization of (1) @ mesh of—6, 6] with NV equal cells,
taking an/V-vectormu with cell averages.

Here,h is the mesh size anfl is the Godunov numerical flux function.

HINT:  An implementation osi necl aw hs is provided insi necl awr hs_ref. p. It as-
sumesru is a column vector.

(1e) [5 points] For timestepping we use the explicit trapezoidal rule, a-@raer explicit
Runge-Kutta single step method characterized by the Butabérau

0/0 0
111 0 . (3)
11
2 2

Implement a MATLAB function
function yend = expltrpz(g,y0, T, M

that integrates the abstract ORE= g(y) over[0, 7' with initial state vector, using)/ equidis-
tant timesteps of the explicit trapezoidal rule (3). Trargument passes a handle of ty@gey)
to the functiong.

HINT: The fileexpl tr pz_r ef . p provides a reference implementation.

(1f) [10points] Relying onsi necl awr hs andexpl t r pz write a MATLAB script
sol vesi necl aw. mthat solves the Cauchy problem for (1) numerically over threetinterval
[0, 1] with

up(x) =

1 for0<z<1,
0 elsewhere.

Sample the initial data at midpoints of mesh cells. Use aiapatesh withN = 600 cells
and M = 200 timesteps and plot the numerical solution for= 1. Save your plot in the file
si necl aw. eps.

HINT: Do not forget axis labels!
(1g) [10points] Assuming a uniform spatial meshwidth> 0 determine the constraint on the

timestep such that the numerical domain of dependenceasntged to cover the exact domain of
dependence (CFL-conditon) for the method used in the presab-problem.
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(1h)  [10 points] Write a MATLAB scriptf i ndti mest ep that determines the maximum
possible timestep size for the numerical experiment ofmatslem (1f).

HINT: You may employ a bisection type approach along with examgimilow-up of solutions.
(1) [5points] Copysi necl awr hs. mwith your implementation o$i necl awr hs to

si necl awr hs_r eac. m In this file extend that function so that it can deal with thgmented
conservation law with reaction term

ou 0
e + Ep sin(ru) = —u . 4

HINT: Recall the finite volume interpretation of the coefficientshe vector argumentu.

(3)) [5 points] Conduct the numerical experiment of sub-problem (1f) forgdyl save the
plot in the filesi necl aw.r eac. eps.

Problem 2. Traceerror estimates [55 points]
On a convex polygorf? C R? with exterior unit normaln we consider the boundary value
problem

—Au=f inQ , m-gradut+u=0 onoQ, (5)

with source functiory € L?(2).

(2a) [5points] State the variational formulation of (5).
HINT: Do not forget the appropriate function spaces.

(2b) [5points] Discuss existence and uniqueness of solutions of the iar&tformulation
obtained in sub-problem (2a).

(2c) [10points] The boundary value problem (5) is discretized by means eélihagrangian
finite elements on a sequenk1;) of triangular meshes d? created by uniform regular refine-
ment of a coarse mesh,. Letu; € SY(M;) denote the finite element solution on mesh.

Quantitatively, predict the asymptotic behavior of the@enormsju — ui\Hl(Q) and|ju — uiHLz(Q)
in terms ofN; := dim 8} (M;).

(2d) [10paints] In the setting of the previous sub-problem, what asymptmgitavior can be
expected from the error norfu — un ;| 12 (50, ON the boundary in terms 6¥; := dim SY(M,).

HINT: Use the multiplicative trace inequality.

(2e) [10 points] The LehrFEM functiorsol vel npedanceBVP( mesh) (provided in the
file sol vel npedanceBVP. m) solves (5) forf = cos(||x||) on a polygon using linear La-
grangian finite elements on triangular meshes. The domaspesified through the argument
nmesh that passes a basic LehrFEM mesh data structure as retuometd dad _Mesh.

Extend this code such that it returns the quanBtyy) := fm uy dS, whereuy is the finite
element solution.
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(2f)  [10 points] Measure the rate of convergence Bfuy) — B(u) by computing the
numerical values on meshes obtained by successive refimeiriba triangular mesh (of a regular
hexagon) stored i@oor d_Hexagon. dat andEl emHexagon. dat . Do this in a MATLAB
scriptconver gence. m

HINT: The “exact” value isB(u) = 2.08154105279.
HINT: To refine a mesh, use the LehrFEM functioef i ne_REG

(29) [5points] Prove that
B(u)= [ f(z)dz . (6)
/

HINT: Use the variational formulation.

Problem 3. Mehrstellenverfahren for Poisson equation [70 points]

We consider the scalar second-order boundary value problem
~Au=f inQ:=0,17 , u=0 ondQ, (7)

for a bounded and continuous functigre C°(€2).

The so-callecCollatz Mehrstellenverfahren can be viewed as a modified finite element Galerkin
discretization using bilinear finite elements on a uniformadyilateral tensor product meshof
with meshwidth: := (M +1)~!, M € N. We take for granted that standard nodal basis functions
are used.

Then the Mehrstellenverfahren is obtained when using th@dg 4 x 4 element matrix on each
cell K of the mesh

5 =2 -1 =2
I{-2 5 -2 -1

-2 -1 =2 5
and the following element vector
, 2fi+ ot fa
- h* [ 2fe + fs+ fi ,
= — = f(a, =1,2,3,4.
PK 12 2f3 +f4 +f2 ) fz f(a'z) ) ? 9 737 (9)
2fa+ 1+ J3

Here, we have denoted the vertices of the squarelcdly a;, i = 1,2, 3,4, and have used the
counter-clockwise local numbering indicated in Figure 1.

Throughout this problem we assume a lexikographic numbesinthe interior vertices of the
mesh and of the associated basis functions, see Figure 2.

Eventually, we arrive at a linear system of equatids = ¢ encoded by (8) and (9).

(3a) [5points] What is the size of the matriA and of the right hand side vectgr?
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Figure 1: Local numbering of vertices and associated |dtaps functions for a square cél.

(3b) [5points] What is the meaning of the entries of the solution vegi@r

(3c) [10points] Write a MATLAB function
function A = conpMehrstell enA(M

that assembles thsparse Galerkin matrix of the Mehrstellenverfahren.
HINT: The matrixA is a block tridiagonal matrix with tridiagonal blocks.

HINT: In MATLAB A = gallery('tridiag’,n,c,d,e), wherec, d, ande are all
scalars, yields the Toeplitz tridiagonal matrix of oradeewith subdiagonal elements diagonal
elementsd, and superdiagonal elememts

HINT: The MATLAB commandkr on that computes the Kronecker product of two matrices

7“1,1Q 7’1,2Q 7”1,MQ

7”2,1Q 7‘2,2Q 7’2,MQ ,
R®Q: : . : ERMN,]VIN

., ReRMM QeRMV,
7”M,lQ 7’M,MQ

comes handy.

(3d) [15points] Devise a MATLAB function

function f = conmpMehrstellenf(f, M
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Figure 2: Lexikographic numbering of vertices of the egstiaint tensor product mesh

that returns the right hand side vectgrfor the Mehrstellenverfahren. The arguménpasses a
handle of typed@ x) (with a 2-vectorx) to the functionf, while M + 1 gives the number of grid
cells in one direction.

(3e) [5points] Write a MATLAB function
function u = sol veMehrstellen(f, M

that computes the coefficient vectgrfor the Mehrstellen discretization of (7), when supplied
with a handlef to the source functiorf and the discretization parametér(see sub-problem

(3e)).

(3f) [10 points] We considerf(z,y) = sin(rz)sin(mry), which yields the exact solution
u(z,y) = 2r%) 7 f(a,y), (v,y) €

Write a MATLAB function

function err = conpgriderr(M

that computes the discrete norm of the discretization error
= max{|u(z) —up(x)|: = (ih,jh), 1 <i,j <M, h:=(M+1)""}.
(10)

whereu,, is the “Mehrstellen solution” for discretization paranretédefined at the vertices of
the mesh.

[ = s ] sy

HINT: A reference implementation afol veMehr st el | en is supplied in the file
sol veMehrstel l en_ref.p.
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(30) [10 points] Write a MATLAB scriptconver gence. mthat estimates the (algebraic)
order of convergence of the Mehrstellenverfahren with éespo the error norm (10) and for
the specific source functiofi(x,y) = sin(wx)sin(7y). To achieve this, evaluate the error for
M = 5,10, 20,40, 80, 160 using the functiorconpgr i der r from sub-problem (3f).

HINT: A reference implementation afonpgr i derr can be accessed through the file
conpgri derr _ref.p.

(3h) [10 points] Show that for non-negativg, the Mehrstellen solution of (7) cannot have
negative values at the vertices of the mesh.

HINT: Use an indirect argument (proof by contradiction) as ingioof of the discrete maximum
principle given in the lecture.

Problem 4. Stabilized Galerkin method for convection-diffusion in 1D [55
points]
We consider the one-dimensional stationary advectidingidn boundary value problem
d?u  du .
€ + Er foin Q:=0,1] , u(0)=u(l)=0, (11)
for some source functiofi € L?(Q2) ande > 0.

The so-callechon-symmetric weak penalty formulation of (11) amounts to the following linear
variational problem: seek € C,, ([0, 1]) such that

a(u,v) 4+ b(u,v) 4+ c(u,v) = /fv dz Vve Cl([0,1]), (12)
with

a(u,v) := /ed—u %dm ,  b(u,v):= j—zvdx,
c(u,v) == —e <S—Z(1)v(1) — j—z(O)U(O) - u(l)j—i(l) + u(O)g—;(O)) + ou(l)v(1) ,

wheres > 0 is a penalty parameter at our disposal.

In this problem we study the Galerkin finite element diseadton of (12) on equidistant meshes

1
M = {Jih, (i + 1)h[, i=0,...,N — 1}, h::N, NeN,
based on the trial spaces of continuous, piecewise linatg &lement functions oM that vanish
inz =0:
Vi = {Vy € SY M) : vy(0) =0} . (13)

The composite trapezoidal rule ov is applied for the approximate evaluation of the right hand
side with continuoug'.

Throughout, the standard “tent function” nodal basi$/gfwill be used. The basis functions are
assumed to be numbered lexikographically “from left to tigh
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(4a) [5points] Show that a (smooth) solution of (11) solves (12).

(4b) [10points] Determine the element matricAs,, B andC x associated with the bilinear
formsa, b andc for
(i) a genericinterior mesh celt” =ik, (i + 1)h[,i=1,...,N — 2,
(i) the rightmost mesh celk, =]1 — A, 1].
(4c) [10points] Write a MATLAB function
function G = conpGal Mat ab(epsilon, N)
that computes the Galerkin matrix for the bilinear farm b on an equidistant mesh withcells.

As trial space us&y from (13) equipped with the nodal basis.

HINT: The MATLAB commandA = gal lery(’'tridiag’, c, d, e) returns the tridiago-
nal matrix with subdiagonal, diagonald, and superdiagonal, which can be scalars or vectors.

HINT: A scrambled reference implementationcafnpGal Mat ab is provided in the file
conmpGal Mat ab_ref. p

(4d) [5points] Write a MATLAB function
function A = conpGal Mat (epsi | on, si gnma, N)
that returns the finite element Galerkin matrix for the tahn form from (12). As trial space use

Vy from (13). The arguments passthe penalty parametet, and the numbelN of mesh cells.

HINT: Use the functioconpGal Mat ab from sub-problem (4c).

(4e) [10points] Write a MATLAB function
funtion rhs = conprhs(f, N)

that computes the right hand side vector for the Galerkiardigzation of (12) described above.
The argumenN passes the number of cells of the mesh, whefeigsa handle of typed x) to
the right hand side functioh.

HINT: Recall that the composite trapezoidal rule should be used.
(4f) [5points] Write a MATLAB scriptsol ve1DCDBVP( epsi | on, si gma, N) that plots

the finite element Galerkin solution of (11) fgr = 1. The arguments provide the penalty
parametet for the variational formulation (12), and the numiérof mesh cells.

Create the plot for = 1072, 0 = 10eN, N = 300, and store it in the filst abgal . eps.
(49) [5points] We writeuy € Vy for the Galerkin solution of (12) witlf = 1, ¢ = 102
computed on a mesh witN cells and penalty parameter= 10e/N.

Table 1 provides thd.?(Q2)-norms of discretization errors for differedf. Using these data,
describe the observef-convergence of the approximate solutians qualitatively and quanti-
tatively.
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N | 40 | 60 | 80 | 160 | 320 | 640 | 1280
lu —un|l 2 | 0.024 | 0.012 | 0.0072 | 0.0019 | 0.00050 | 0.00013 | 0.000032 |

Table 1: (Approximate).?(Q2)-norm of the discretization error of the finite element Giiler
discretization of (12)

HINT: The data from the table are stored in the §iteabger r . dat and can be loaded into an
2 x 8 matrixst abgerr vial oad(’ stabgerr.dat’).

(4h) [5points] Solve sub-problem (4f) for a finite element Galerkin diseagton based on
the trial and test spaces

Vo = S?(M) A Hé(Q) :

To that end copy your MATLAB scripsol ve1DCDBVP. mto sol velDCDBVPcl ass. mand
modify the latter file.

HINT: What is the dimension dfy (? The modifications affect only a single row and column of
the Galerkin matrix and a single entry of the right hand sieleter.

Problem References

[NPDE] Lecture Slidedor the course “Numerical Methods for Partial Differentigduations”,
SVN revision # 54024.

Last modified on April 11, 2013
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http://www.sam.math.ethz.ch/~hiptmair/tmp/NPDE12_ext.pdf
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