
Course 401-0674-00L: Numerical Methods for
Partial Differential Equations

Examination, 22.01.2013

Prof. Ralf Hiptmair Dont’t panic !
Good luck !

Duration of examination: 180 minutes

The total number of points is 250, the maximum grade can be achieved with 170, passing
requires 85. Please pay attention to the number of points awarded for each (sub-)task. It is
roughly correlated with the amount of information your answer should contain. For addi-
tional information see the examination instruction sheet.

Problem 1. Finite volume method for scalar conservation law [70 points]

We consider the Cauchy problem onR×]0, T [ for the scalar conservation law

∂u

∂t
+

∂

∂x
sin(πu) = 0 . (1)

with initial conditionu(x, 0) = u0(x), x ∈ R, satisfying

0 ≤ u0(x) ≤ 1 , x ∈ R . (2)

WARNING: The flux functionsin(πu) is concave on [0, 1]. Most of the examples in the lecture
slides are forconvex flux functions!

(1a) [5 points] Determine the entropy solutions of the Riemann problem with

(i) u0(x) =

{

0 for x ≤ 0 ,

1 for x > 0
, (ii) u0(x) =

{

1 for x ≤ 0 ,

0 for x > 0 ,

(1b) [5 points] Assumesupp(u0) ⊂ [0, 1] and (2). Describe the maximal support of the
solutionu of (1) in thex-t-plane.

(1c) [10 points] Write a MATLAB function

function flux = sinegodflux(v,w)

that implements the Godunov numerical fluxFGD(u, v) = f(u↓(v, w)) for (1) under the assump-
tion 0 ≤ v, w ≤ 1.

HINT: Note that the flux functionf(u) = sin(πu) is concave on[0, 1].

HINT: For reference a scrambled version ofsinegodflux is available insinegodflux ref.p.
It is vector-safe in the sense that you can pass vectorsv andw and the result will be a vector of
valuesFGD(v, w).
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(1d) [5 points] For the spatial semi-discretization of (1) we use a finite volume method on an
equidistant spatial mesh covering the interval[−6, 6]. We rely on the Godunov flux and assume
thatu = 0 outside this interval for all relevant times.

Devise a MATLAB function

function rhs = sineclawrhs(mu)

that realizes the right hand side of the ODE, namely the expression

−
1

h
(F (µj, µj+1) − F (µj−1, µj))

arising from this finite volume semi-discretization of (1) on a mesh of[−6, 6] with N equal cells,
taking anN -vectormu with cell averages.

Here,h is the mesh size andF is the Godunov numerical flux function.

HINT: An implementation ofsineclawrhs is provided insineclawrhs ref.p. It as-
sumesmu is a column vector.

(1e) [5 points] For timestepping we use the explicit trapezoidal rule, a 2nd-order explicit
Runge-Kutta single step method characterized by the Butcher tableau

0 0 0
1 1 0

1
2

1
2

. (3)

Implement a MATLAB function

function yend = expltrpz(g,y0,T,M)

that integrates the abstract ODEẏ = g(y) over[0, T ] with initial state vectory0 usingM equidis-
tant timesteps of the explicit trapezoidal rule (3). Theg-argument passes a handle of type@(y)
to the functiong.

HINT: The fileexpltrpz ref.p provides a reference implementation.

(1f) [10 points] Relying onsineclawrhs andexpltrpz write a MATLAB script
solvesineclaw.m that solves the Cauchy problem for (1) numerically over the time interval
[0, 1] with

u0(x) =

{

1 for 0 ≤ x < 1 ,

0 elsewhere.

Sample the initial data at midpoints of mesh cells. Use a spatial mesh withN = 600 cells
andM = 200 timesteps and plot the numerical solution forT = 1. Save your plot in the file
sineclaw.eps.

HINT: Do not forget axis labels!

(1g) [10 points] Assuming a uniform spatial meshwidthh > 0 determine the constraint on the
timestep such that the numerical domain of dependence is guranteed to cover the exact domain of
dependence (CFL-conditon) for the method used in the previous sub-problem.
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(1h) [10 points] Write a MATLAB script findtimestep that determines the maximum
possible timestep size for the numerical experiment of sub-problem (1f).

HINT: You may employ a bisection type approach along with examining blow-up of solutions.

(1i) [5 points] Copysineclawrhs.m with your implementation ofsineclawrhs to
sineclawrhs reac.m. In this file extend that function so that it can deal with the augmented
conservation law with reaction term

∂u

∂t
+

∂

∂x
sin(πu) = −u . (4)

HINT: Recall the finite volume interpretation of the coefficients of the vector argumentmu.

(1j) [5 points] Conduct the numerical experiment of sub-problem (1f) for (4)and save the
plot in the filesineclaw reac.eps.

Problem 2. Trace error estimates [55 points]

On a convex polygonΩ ⊂ R
2 with exterior unit normaln we consider the boundary value

problem

−∆u = f in Ω , n · grad u + u = 0 on∂Ω , (5)

with source functionf ∈ L2(Ω).

(2a) [5 points] State the variational formulation of (5).

HINT: Do not forget the appropriate function spaces.

(2b) [5 points] Discuss existence and uniqueness of solutions of the variational formulation
obtained in sub-problem (2a).

(2c) [10 points] The boundary value problem (5) is discretized by means of linear Lagrangian
finite elements on a sequence(Mi) of triangular meshes ofΩ created by uniform regular refine-
ment of a coarse meshM0. Let ui ∈ S0

1 (Mi) denote the finite element solution on meshMi.

Quantitatively, predict the asymptotic behavior of the error norms|u − ui|H1(Ω) and‖u − ui‖L2(Ω)

in terms ofNi := dimS0
1 (Mi).

(2d) [10 points] In the setting of the previous sub-problem, what asymptoticbehavior can be
expected from the error norm‖u − uN,i‖L2(∂Ω) on the boundary in terms ofNi := dimS0

1 (Mi).

HINT: Use the multiplicative trace inequality.

(2e) [10 points] The LehrFEM functionsolveImpedanceBVP(mesh) (provided in the
file solveImpedanceBVP.m) solves (5) forf ≡ cos(‖x‖) on a polygon using linear La-
grangian finite elements on triangular meshes. The domain isspecified through the argument
mesh that passes a basic LehrFEM mesh data structure as returned fromload Mesh.

Extend this code such that it returns the quantityB(uN) :=
∫

∂Ω
uN dS, whereuN is the finite

element solution.
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(2f) [10 points] Measure the rate of convergence ofB(uN) → B(u) by computing the
numerical values on meshes obtained by successive refinement of the triangular mesh (of a regular
hexagon) stored inCoord Hexagon.dat andElem Hexagon.dat. Do this in a MATLAB
scriptconvergence.m.

HINT: The “exact” value isB(u) = 2.08154105279.

HINT: To refine a mesh, use the LehrFEM functionrefine REG.

(2g) [5 points] Prove that

B(u) =

∫

Ω

f(x) dx . (6)

HINT: Use the variational formulation.

Problem 3. Mehrstellenverfahren for Poisson equation [70 points]

We consider the scalar second-order boundary value problem

−∆u = f in Ω :=]0, 1[2 , u = 0 on∂Ω , (7)

for a bounded and continuous functionf ∈ C0(Ω).

The so-calledCollatz Mehrstellenverfahren can be viewed as a modified finite element Galerkin
discretization using bilinear finite elements on a uniform quadrilateral tensor product mesh ofΩ
with meshwidthh := (M +1)−1, M ∈ N. We take for granted that standard nodal basis functions
are used.

Then the Mehrstellenverfahren is obtained when using the following 4×4 element matrix on each
cell K of the mesh

AK :=
1

6









5 −2 −1 −2
−2 5 −2 −1
−1 −2 5 −2
−2 −1 −2 5









, (8)

and the following element vector

~ϕK =
h2

12









2f1 + f2 + f4

2f2 + f3 + f1

2f3 + f4 + f2

2f4 + f1 + f3









, fi := f(ai) , i = 1, 2, 3, 4 . (9)

Here, we have denoted the vertices of the square cellK by ai, i = 1, 2, 3, 4, and have used the
counter-clockwise local numbering indicated in Figure 1.

Throughout this problem we assume a lexikographic numbering of the interior vertices of the
mesh and of the associated basis functions, see Figure 2.

Eventually, we arrive at a linear system of equationsA~µ = ~ϕ encoded by (8) and (9).

(3a) [5 points] What is the size of the matrixA and of the right hand side vector~ϕ?
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Figure 1: Local numbering of vertices and associated local shape functions for a square cellK.

(3b) [5 points] What is the meaning of the entries of the solution vector~µ?

(3c) [10 points] Write a MATLAB function

function A = compMehrstellenA(M)

that assembles thesparse Galerkin matrix of the Mehrstellenverfahren.

HINT: The matrixA is a block tridiagonal matrix with tridiagonal blocks.

HINT: In MATLAB A = gallery(’tridiag’,n,c,d,e), wherec, d, ande are all
scalars, yields the Toeplitz tridiagonal matrix of ordern with subdiagonal elementsc, diagonal
elementsd, and superdiagonal elementse.

HINT: The MATLAB commandkron that computes the Kronecker product of two matrices

R ⊗ Q =











r1,1Q r1,2Q · · · r1,MQ

r2,1Q r2,2Q · · · r2,MQ
...

.. .
...

rM,1Q · · · · · · rM,MQ











∈ R
MN,MN , R ∈ R

M,M , Q ∈ R
N,N ,

comes handy.

(3d) [15 points] Devise a MATLAB function

function f = compMehrstellenf(f,M)
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1 MM−1

M*M

2 3

M+2 M+3 2M

M(M−1)+1

M+1

Figure 2: Lexikographic numbering of vertices of the equidistant tensor product mesh

that returns the right hand side vector~ϕ for the Mehrstellenverfahren. The argumentf passes a
handle of type@(x) (with a 2-vectorx) to the functionf , while M + 1 gives the number of grid
cells in one direction.

(3e) [5 points] Write a MATLAB function

function u = solveMehrstellen(f,M)

that computes the coefficient vector~µ for the Mehrstellen discretization of (7), when supplied
with a handlef to the source functionf and the discretization parameterM (see sub-problem
(3e)).

(3f) [10 points] We considerf(x, y) = sin(πx) sin(πy), which yields the exact solution
u(x, y) = (2π2)−1f(x, y), (x, y) ∈ Ω.

Write a MATLAB function

function err = compgriderr(M)

that computes the discrete norm of the discretization error

‖u − uM‖mst := max{|u(x) − uM(x)| : x = (ih, jh), 1 ≤ i, j ≤ M, h := (M + 1)−1} .

(10)

whereuM is the “Mehrstellen solution” for discretization parameter M defined at the vertices of
the mesh.

HINT: A reference implementation ofsolveMehrstellen is supplied in the file
solveMehrstellen ref.p.
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(3g) [10 points] Write a MATLAB script convergence.m that estimates the (algebraic)
order of convergence of the Mehrstellenverfahren with respect to the error norm (10) and for
the specific source functionf(x, y) = sin(πx) sin(πy). To achieve this, evaluate the error for
M = 5, 10, 20, 40, 80, 160 using the functioncompgriderr from sub-problem (3f).

HINT: A reference implementation ofcompgriderr can be accessed through the file
compgriderr ref.p.

(3h) [10 points] Show that for non-negativef , the Mehrstellen solution of (7) cannot have
negative values at the vertices of the mesh.

HINT: Use an indirect argument (proof by contradiction) as in theproof of the discrete maximum
principle given in the lecture.

Problem 4. Stabilized Galerkin method for convection-diffusion in 1D [55
points]

We consider the one-dimensional stationary advection-diffusion boundary value problem

−ǫ
d2u

dx2
+

du

dx
= f in Ω :=]0, 1[ , u(0) = u(1) = 0 , (11)

for some source functionf ∈ L2(Ω) andǫ > 0.

The so-callednon-symmetric weak penalty formulation of (11) amounts to the following linear
variational problem: seeku ∈ C1

pw([0, 1]) such that

a(u, v) + b(u, v) + c(u, v) =

1
∫

0

fv dx ∀v ∈ C1
pw([0, 1]) , (12)

with

a(u, v) :=

1
∫

0

ǫ
du

dx

dv

dx
dx , b(u, v) :=

1
∫

0

du

dx
v dx ,

c(u, v) := −ǫ

(

du

dx
(1)v(1) −

du

dx
(0)v(0) − u(1)

dv

dx
(1) + u(0)

dv

dx
(0)

)

+ σu(1)v(1) ,

whereσ > 0 is a penalty parameter at our disposal.

In this problem we study the Galerkin finite element discretization of (12) on equidistant meshes

M := {]ih, (i + 1)h[, i = 0, . . . , N − 1} , h :=
1

N
, N ∈ N ,

based on the trial spaces of continuous, piecewise linear finite element functions onM that vanish
in x = 0:

VN := {VN ∈ S0
1 (M) : vN(0) = 0} . (13)

The composite trapezoidal rule onM is applied for the approximate evaluation of the right hand
side with continuousf .

Throughout, the standard “tent function” nodal basis ofVN will be used. The basis functions are
assumed to be numbered lexikographically “from left to right”.
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(4a) [5 points] Show that a (smooth) solution of (11) solves (12).

(4b) [10 points] Determine the element matricesAK , BK andCK associated with the bilinear
formsa, b andc for

(i) a generic interior mesh cellK =]ih, (i + 1)h[, i = 1, . . . , N − 2,

(ii) the rightmost mesh cellK0 =]1 − h, 1[.

(4c) [10 points] Write a MATLAB function

function G = compGalMatab(epsilon,N)

that computes the Galerkin matrix for the bilinear forma+b on an equidistant mesh withN cells.
As trial space useVN from (13) equipped with the nodal basis.

HINT: The MATLAB commandA = gallery(’tridiag’,c,d,e) returns the tridiago-
nal matrix with subdiagonalc, diagonald, and superdiagonale, which can be scalars or vectors.

HINT: A scrambled reference implementation ofcompGalMatab is provided in the file
compGalMatab ref.p

(4d) [5 points] Write a MATLAB function

function A = compGalMat(epsilon,sigma,N)

that returns the finite element Galerkin matrix for the bilinear form from (12). As trial space use
VN from (13). The arguments passǫ, the penalty parameterσ, and the numberN of mesh cells.

HINT: Use the functioncompGalMatab from sub-problem (4c).

(4e) [10 points] Write a MATLAB function

funtion rhs = comprhs(f,N)

that computes the right hand side vector for the Galerkin discretization of (12) described above.
The argumentN passes the number of cells of the mesh, whereasf is a handle of type@(x) to
the right hand side functionf.

HINT: Recall that the composite trapezoidal rule should be used.

(4f) [5 points] Write a MATLAB scriptsolve1DCDBVP(epsilon,sigma,N) that plots
the finite element Galerkin solution of (11) forf ≡ 1. The arguments provideǫ, the penalty
parameterσ for the variational formulation (12), and the numberN of mesh cells.

Create the plot forǫ = 10−2, σ = 10ǫN , N = 300, and store it in the filestabgal.eps.

(4g) [5 points] We writeuN ∈ VN for the Galerkin solution of (12) withf ≡ 1, ǫ = 10−2

computed on a mesh withN cells and penalty parameterσ = 10ǫN .

Table 1 provides theL2(Ω)-norms of discretization errors for differentN . Using these data,
describe the observedL2-convergence of the approximate solutionsuN qualitatively and quanti-
tatively.
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N 40 60 80 160 320 640 1280
‖u − uN‖L2(Ω) 0.024 0.012 0.0072 0.0019 0.00050 0.00013 0.000032

Table 1: (Approximate)L2(Ω)-norm of the discretization error of the finite element Galerkin
discretization of (12)

HINT: The data from the table are stored in the filestabgerr.dat and can be loaded into an
2 × 8 matrixstabgerr via load(’stabgerr.dat’).

(4h) [5 points] Solve sub-problem (4f) for a finite element Galerkin discretization based on
the trial and test spaces

VN,0 := S0
1 (M) ∩ H1

0 (Ω) .

To that end copy your MATLAB scriptsolve1DCDBVP.m to solve1DCDBVPclass.m and
modify the latter file.

HINT: What is the dimension ofVN,0? The modifications affect only a single row and column of
the Galerkin matrix and a single entry of the right hand side vector.

Problem References

[NPDE] Lecture Slidesfor the course “Numerical Methods for Partial DifferentialEquations”,
SVN revision # 54024.

Last modified on April 11, 2013
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