
R. Hiptmair
L. Scarabosio
E. Fonn

Spring Term 2013

Numerical Methods for Partial
Differential Equations

ETH Zürich
D-MATH

Exam Winter 2014

Problem 0.1 Penalty Technique for Dirichlet Boundary Conditions [61 points]
Let Ω ⊂ R2 be a bounded polygonal domain. For a parameter ϵ > 0 consider the linear variational
problem: seek uϵ ∈ H1(Ω)∫

Ω

graduϵ · grad v dx+ ϵ−1

∫
∂Ω

(uϵ − g) v dS = 0 ∀v ∈ H1(Ω) , (0.1.1)

where g ∈ H1(∂Ω) is a given continuous function on the boundary ∂Ω.

(0.1a) [I, 5 points] Explain, why (0.1.1) has a unique solution for any g.

(0.1b) [I, 5 points] Find the strong form (“PDE-form”) of the 2nd-order elliptic boundary
value problem associated with the variational problem (0.1.1).

In the sequel, write u∗ ∈ H1(Ω) for the solution of

−∆u = 0 in Ω , u = g on ∂Ω . (0.1.2)

(0.1c) [I, 10 points] Show that

∥graduϵ∥2L2(Ω) + ϵ−1∥uϵ − g∥2L2(∂Ω) ≤ ∥gradu∗∥2L2(Ω) . (0.1.3)

HINT: The solutions uϵ of (0.1.1) are minimizers of particular quadratic functionals on H1(Ω).

(0.1d) [7 points] Give heuristic arguments why we can expect uϵ → u∗ for ϵ → 0.

Now we discretize (0.1.1) by means of linear Lagrangian finite elements S0
1 (M) ⊂ H1(Ω) based

on a triangular mesh of Ω. The usual nodal basis of S0
1 (M) composed of tent functions is used

throughout, its ordering induced by the numbering of vertices.

(0.1e) [I, 10 points] Implement a LehrFEM-style MATLAB function

function Aloc = STIMA Penal LFE(Vertices,pp,bdflag)

that computes the element stiffness matrix AK ∈ R3,3 for the bilinear form of (0.1.1) on a triangle
K. Vertices contains a 3× 2-matrix whose rows provide the coordinates of the vertices of the
triangle. pp passes the value of the penalty parameter ϵ > 0, and the array bdflags of three

Exam Winter 2014 Page 1 Problem 0.1

boolean values indicates whether the ith edge of the triangle (the edge opposite the ith vertex),
i = 1, 2, 3, is located on ∂Ω.

HINT: You may rely on the LehrFEM function STIMA Lapl LFE which computes the local
stiffness matrix for the bilinear form associated with −∆ and linear Lagrangian finite elements.

(0.1f) [10 points] The given LehrFEM library function

function A = assemMat LFE(Mesh,EHandle,varargin)

computes the stiffness matrix for the Galerkin finite element discretization of the Neumann prob-
lem

−∆u = 0 in Ω , gradu · n = q on ∂Ω , (0.1.4)

by means of linear Lagrangian finite elements on a triangular mesh of Ω.

Copy assemMat LFE.m and modify it, using STIMA Penal LFE from subproblem (0.1e), to
write a MATLAB assembly function

function A = assem Penal LFE(Mesh,pp)

that returns the stiffness matrix for the variational problem (0.1.1) for a Galerkin finite element
discretization by means of S0

1 (M). The argument Mesh must supply a LehrFEM mesh data
structure complete with edge information, while pp passes ϵ.
Assume that the structure Mesh contains the field Mesh.BdFlags, an array of length the num-
ber of edges in the mesh; if the edge i is on the boundary, then Mesh.BdFlags(i)=-1, if it
is an inner edge, then Mesh.BdFlags(i)=0.

HINT:

• The Vert2Edge-field of Mesh can be used to obtain the index numbers of the edges of a
triangle.

• A scrambled reference implementation of STIMA Penal LFE is available in the file
STIMA Penal LFE ref.p.

(0.1g) [7 points] The given LehrFEM function

function phi = assemLoad Neu LFE(Mesh,QHandle)

computes the right hand side vector for the Galerkin finite element discretization of the Neumann
problem (0.1.4) by means of linear Lagrangian finite elements on a triangular mesh of Ω. The
argument GHandle passes a function handle to the function q : ∂Ω → R that supplies the
Neumann boundary values.

Use this function and your implementation of assem Penal LFE to devise a MATLAB func-
tion

function u eps = solve Penal DirPrb(Mesh,GHandle,pp)

Exam Winter 2014 Page 2 Problem 0.1

that computes the basis expansion coefficients of the S0
1 (M)-finite element solution of (0.1.1).

Here, GHandle passes a function handle of type @(x) to g.

HINT: A scrambled reference implementation of assem Penal LFE is provided in
assem Penal LFE ref.p.
For assem Penal LFE, again assume that the structure Mesh.BdFlags is already initialized.

(0.1h) [I, 7 points] We denote by uϵ,i ∈ S0
1 (Mi) the finite element Galerkin solutions of

(0.1.1) on a sequence of triangular meshes M0,M1, . . . generated by regular uniform refine-
ments. The penalty parameter ϵ is kept fixed.

In particular, we use as Ω the equilateral triangle with vertices
(
0
0

)
,
(
1
0

)
, and

(1
2

1
2

√
3

)
, and g(x) :=

x2
1 − x2

2. The doubly logarithmic plot of Figure 0.1 displays three lines. Which one correctly
represents the semi-norm |uϵ,i − u∗|H1(Ω), where u∗ solves (0.1.2). Justify your answer.

10
−3

10
−2

10
−1

10
0

10
−2

10
−1

10
0

log(h)

lo
g(

er
ro

r)

Figure 0.1: “Error curves” for subproblem (0.1h)

Listing 0.1: Testcalls for Problem 0.1
1 c l e a r Mesh;
2 Mesh.Coordinates = [0 0; 1 0; 0.5 s q r t(3)/2];
3 Mesh.Elements = [1 2 3];
4 Mesh = add_Edges(Mesh);
5 GHandle = @(x,varargin) x(:,1).ˆ2 - x(:,2).ˆ2;
6 pp = 5e-3;
7 Loc = get_BdEdges(Mesh);
8 Mesh.BdFlags = z e r o s(s i z e(Mesh.Edges,1),1);
9 Mesh.BdFlags(Loc) = -1;

10

11 f p r i n t f(’\n##STIMA_Penal_LFE’);
12 Vertices = Mesh.Coordinates;
13 bdflag = [1 0 0];
14 STIMA_Penal_LFE(Vertices,pp,bdflag)
15

Exam Winter 2014 Page 3 Problem 0.1

16 f p r i n t f(’\n##assem_Penal_LFE’);
17 Mesh = refine_REG(Mesh);
18 assem_Penal_LFE(Mesh,pp)
19

20 f p r i n t f(’\n##solve_Penal_DirPrb’);
21 solve_Penal_DirPrb(Mesh,GHandle,pp)

Listing 0.2: Output for Testcalls for Problem 0.1
1 >> test_call
2

3 ##STIMA_Penal_LFE
4 ans =
5

6 0.5774 -0.2887 -0.2887
7 -0.2887 67.2440 33.0447
8 -0.2887 33.0447 67.2440
9

10 ##assem_Penal_LFE
11 ans =
12

13 (1,1) 67.2440
14 (4,1) 16.3780
15 (5,1) 16.3780
16 (2,2) 67.2440
17 (4,2) 16.3780
18 (6,2) 16.3780
19 (3,3) 67.2440
20 (5,3) 16.3780
21 (6,3) 16.3780
22 (1,4) 16.3780
23 (2,4) 16.3780
24 (4,4) 68.3987
25 (5,4) -0.5774
26 (6,4) -0.5774
27 (1,5) 16.3780
28 (3,5) 16.3780
29 (4,5) -0.5774
30 (5,5) 68.3987
31 (6,5) -0.5774
32 (2,6) 16.3780
33 (3,6) 16.3780
34 (4,6) -0.5774
35 (5,6) -0.5774
36 (6,6) 68.3987
37

38 ##solve_Penal_DirPrb
39 ans =
40

41 -0.0097

Exam Winter 2014 Page 4 Problem 0.1

42 0.9867
43 -0.4770
44 0.1950
45 -0.0917
46 0.3966

Problem 0.2 Thermal Evolution Problem [65 points]
On a 2D bounded polygonal spatial domain Ω ⊂ R2 and time interval [0, T], T > 0, we consider
the following evolution problem in variational form: seek t 7→ u(t) ∈ H1(Ω) such that∫

Ω

∂u

∂t
(x, t) dx ·

∫
Ω

v(x) dx+

∫
Ω

gradu · grad v dx = 0 ∀v ∈ H1(Ω) ,

u(·, 0) = u0 on Ω .

(0.2.1)

For the spatial semi-discretization of (0.2.1) we employ quadratic Lagrangian finite elements
(space S0

2 (M)) on a triangular mesh M. We adopt the notation V(M) and E(M) for the sets of
vertices and edges, respectively, of M. As basis for S0

2 (M) we use the nodal basis associated
with interpolation nodes located in the vertices and the midpoints of the edges of M. We assume
a numbering of vertices and edges of the mesh, which induces a numbering of the nodal basis
functions. We follow the convention that in the ordered basis the vertex associated basis functions
come before the edge associated.

Eventually, spatial semi-discretization leads to an ordinary differential equation (ODE) of the
form

T ˙⃗µ+Aµ⃗ = 0 , (0.2.2)

for the vector µ⃗ = µ⃗(t), 0 ≤ t ≤ T , of the finite element basis expansion coefficients of an
approximation uN(t) of u(t).

The discretization in time of (0.2.2) is done using the 2nd-order implicit SDIRK-2 Runge-Kutta
timestepping method, which is defined through the Butcher scheme

λ λ 0
1 1− λ λ

1− λ λ
, λ := 1− 1

2

√
2 , (0.2.3)

(0.2a) [I, 5 points] The evolution problem (0.2.1) can be written in the form

t 7→ u(t) ∈ V :
d

dt
m(u(t), v) + a(u, v) = 0 ∀v ∈ V . (0.2.4)

What are the space V and the bilinear forms m and a in the case of (0.2.1)?

(0.2b) [I, 7 points] Show that
∫
Ω
u(x, t) dx does not change during the evolution (0.2.1).

(0.2c) [I, 5 points] What are the sizes of the matrices M and A in (0.2.2) in terms of ♯V(M)
and ♯E(M)?

HINT: The symbol ♯ denotes the number of elements of a set.

Exam Winter 2014 Page 5 Problem 0.2

(0.2d) [I, 7 points] Give a sharp upper bound for the number of possible non-zero entries in
the matrix A in terms of ♯V(M) and ♯E(M).

(0.2e) [I, 10 points] The matrix T can be written in the form T = tt⊤ with a suitable column
vector t. Describe the entries of t.

HINT: It is useful to remember that the simple quadrature formula on a triangle K,∫
K

f(x) dx ≈ 1
3
|K|

(
f(m1) + f(m2) + f(m3)

)
, (0.2.5)

where the mi, i = 1, 2, 3, are the midpoints of the edges of K. This quadrature formula is exact
for quadratic polynomials f ∈ P2(K)!

(0.2f) [I, 7 points] Show that T+ αA is symmetric and positive definite for any α > 0.

(0.2g) [10 points] Write an efficient LehrFEM-style MATLAB function

function tvec = assem Tvec QFE(Mesh)

that computes the vector t as introduced in subproblem (0.2e). Here, Mesh is a LehrFEM (trian-
gular) mesh data structure complete with edge information.

HINT: Use the given function area = ElemArea(Vertices) which computes the area of
the triangle with vertex coordinates contained in the 3× 2-matrix Vertices.

(0.2h) [I, 7 points] Now we consider the fully discrete evolution. How do you have to adjust
timestep in order to balance spatial and temporal errors, when one uniform regular refinement of
the spatial mesh is performed and you are interested in the H1(Ω)-norm of the error? (Smoothness
in space and time of the solution can be taken for granted).

(0.2i) [I, 7 points] Which linear systems of equations, expressed in terms of the matrices T
and A have to be solved in every timestep of the fully discrete evolution?

Listing 0.3: Testcalls for Problem 0.2
1 Mesh.Coordinates = [0 0 ; 1 0; 0 1];
2 Mesh.Elements = [1 2 3];
3 Mesh = add_Edges(Mesh);
4 Mesh.BdFlags=z e r o s(l e n g t h(Mesh.Edges),1);
5 Mesh = refine_REG(Mesh);
6 Mesh = add_Edge2Elem(Mesh);
7

8 f p r i n t f(’\n##assemTvecQFE’);
9 t = assemTvecQFE(Mesh)

Listing 0.4: Output for Testcalls for Problem 0.2
1 >> t = assemTvecQFE(Mesh)
2

3 t =

Exam Winter 2014 Page 6 Problem 0.2

4

5 0
6 0
7 0
8 0
9 0

10 0
11 0.0417
12 0.0417
13 0.0417
14 0.0417
15 0.0417
16 0.0417
17 0.0833
18 0.0833
19 0.0833

Problem 0.3 Transformed Convection-Diffusion Problem [76 points]
On a polygonal domain Ω ⊂ R2 we consider two variational problems

u ∈ H1
0 (Ω) :

∫
Ω

(
gradu− gradw u

)
· grad v dx︸ ︷︷ ︸

=:a1(u,v)

=

∫
Ω

fv dx ∀v ∈ H1
0 (Ω) , (0.3.1a)

ũ ∈ H1
0 (Ω) :

∫
Ω

exp(w(x))grad ũ · grad v dx︸ ︷︷ ︸
=:a2(u,v)

=

∫
Ω

fv dx ∀v ∈ H1
0 (Ω) , (0.3.1b)

for f ∈ L2(Ω).
Here, the given function w belongs to C2(Ω), that is, it is twice continuously differentiable on Ω
(up to the boundary).

(0.3a) [I, 5 points] Show that the bilinear form a1(·, ·) underlying the variational problem
(0.3.1a) is continuous on H1(Ω).

HINT: Remember that a bilinear form a(·, ·) defined on a vector space V with norm ∥·∥V is called
continuous on V , if and only if

|a(u, v)| ≤ C∥u∥V ∥v∥V ∀u, v ∈ V , (0.3.2)

for some C > 0.

(0.3b) [I, 5 points] State the 2nd-order boundary value problem satisfied by the solution ũ
of (0.3.1b).

(0.3c) [I, 10 points] Which 2nd-order boundary value problem is solved by u from (0.3.1a)?

(0.3d) [I, 7 points] Show existence and uniqueness of solutions of (0.3.1b).

HINT: You may cite theoretical results presented in the course.

Exam Winter 2014 Page 7 Problem 0.3

(0.3e) [I, 7 points] Show that the function x 7→ exp(−w(x))v(x) belongs to H1(Ω), if
v ∈ H1(Ω).

HINT: Some of the following product rule formulas from vector analysis may be be useful:

grad(uv) = grad u · v + ugrad v , u, v ∈ H1(Ω) , (0.3.3)
div(wu) = divw u+w · gradu , (0.3.4)
div(gradu) = ∆u . (0.3.5)

(0.3f) [I, 10 points] Show that ũ(x) = exp(−w(x))u(x), x ∈ Ω, where u solves (0.3.1a)
and ũ solves (0.3.1b).

HINT: Use the hint given for (0.3e).

Let Ω be equipped with a triangular mesh M. The function w in 0.3.1 is now approximated
by a piecewise linear finite element function: wN ∈ S0

1 (M). We perform a Ritz-Galerkin dis-
cretization of both (0.3.1a) and (0.3.1b) (with w replaced by wN) based on the trial and test space
S0
1,0(M) of linear Lagrangian finite element functions on M that vanish on the boundary ∂Ω. Let

uN and ũN denote the resulting approximate solutions of (0.3.1a) and (0.3.1b), respectively.

(0.3g) [I, 5 points] Argue, why, in contrast to what we found in subproblem (0.3f), the
relationship ũN(x) = exp(−wN(x))uN(x), x ∈ Ω, does not hold in general.

(0.3h) [I, 10 points] Denote by A∆
K the element stiffness matrix for the bilinear form associ-

ated with −∆ and linear Lagrangian finite elements for a triangle K, and by µw ∈ R3 the vector
containing the values of wN at the three vertices of K.
Write the element stiffness matrix A1

K ∈ R3,3 on the triangle K ∈ M for the variational problem
(0.3.1a) (with w replaced by wN) and linear Lagrangian finite elements in terms of A∆

K and µw.

HINT: For a linear function f on the triangle K with vertices a1, a2, a3, it holds:∫
K

f(x) dx = 1
3
|K|

(
f(a1) + f(a2) + f(a3)

)
. (0.3.6)

(0.3i) [5 points] Implement a MATLAB function

function Aloc = STIMA VP1 LFE(Vertices,wvals)

that computes the element stiffness matrix A1
K ∈ R3,3 on the triangle K ∈ M for the variational

problem (0.3.1a) (with w replaced by wN) and linear Lagrangian finite elements. Following
the LehrFEM conventions, the argument Vertices is a 3 × 2-matrix, whose rows contain the
coordinates of the vertices of K. The argument wvals is a column vector of length 3, whose
entries provide the values of wN ∈ S0

1 (M) in the vertices of K (i.e. wvals coincides with
the vector µw of subproblem (0.3h)). The local numbering of the vertices follows their order in
Vertices.

For the implementation you may rely on the LehrFEM library function
Aloc = STIMA Lapl LFE(Vertices) that computes the local stiffness matrix A∆

K for the
bilinear form associated with −∆ and linear Lagrangian finite elements.

Exam Winter 2014 Page 8 Problem 0.3

(0.3j) [I, 7 points] Denote again by A∆
K the element stiffness matrix for the bilinear form

associated with −∆ and linear Lagrangian finite elements for a triangle K.
Write the element stiffness matrix A2

K ∈ R3,3 on the triangle K ∈ M for the variational problem
(0.3.1b) (with w replaced by wN) and linear Lagrangian finite elements in terms of A∆

K and µw.

To evaluate integrals of continuous functions over a triangle K use the quadrature formula∫
K

f(x) dx ≈ 1
3
|K|

(
f(m1) + f(m2) + f(m3)

)
, (0.3.7)

where m1, m2, and m3 are the midpoints of the edges of K.

(0.3k) [5 points] Implement a MATLAB function

function Aloc = STIMA VP2 LFE(Vertices,wvals)

that provides the element stiffness matrices for (0.3.1b) (with w replaced by wN) and its Ritz-
Galerkin discretization on the finite element space S0

1,0(M). The arguments are the same as those
for STIMA VP1 LFE from subproblem (0.3i).

For the implementation you may again rely on the LehrFEM library function
Aloc = STIMA Lapl LFE(Vertices that computes the local stiffness matrix A∆

K for the
bilinear form associated with −∆ and linear Lagrangian finite elements.

Listing 0.5: Testcalls for Problem 0.3
1 f p r i n t f(’##STIMA_VP1_LFE’)
2 Vertices=[0 0;1 0; 0 1];
3 wvals=[1 2 3]’;
4 A1 = STIMA_VP1_LFE(Vertices,wvals)
5

6 f p r i n t f(’##STIMA_VP2_LFE’)
7 A2 = STIMA_VP2_LFE(Vertices,wvals)

Listing 0.6: Output for Testcalls for Problem 0.3
1 >> test_call
2 ##STIMA_VP1_LFE
3 A1 =
4

5 1.5000 0 0
6 -0.6667 0.3333 -0.1667
7 -0.8333 -0.3333 0.1667
8

9 ##STIMA_VP2_LFE
10 A2 =
11

12 1.6348 -0.8174 -0.8174
13 -0.8174 0.8174 0.0000
14 -0.8174 0.0000 0.8174

Exam Winter 2014 Page 9 Problem 0.3

Problem 0.4 Averaging Recovery of Continuous Gradients [84 points]
The polygonal bounded domain Ω ⊂ R2 is equipped with a triangular mesh M. A numbering
of the triangles and vertices of the mesh is taken for granted. Let us denote by V(M) the set of
vertices of M.

We write S0
1 (M) for the space of M-piecewise linear continuous functions, and S−1

0 (M) for the
space of M-piecewise constant functions. These spaces are equipped with nodal bases; (i) as
basis for S0

1 (M) we use the locally supported tent functions ordered according to the numbering
of the vertices of the mesh, and (ii) as basis for S−1

0 (M) we rely on the characteristic functions
of the triangles of the mesh, that is, functions that attain the value 1 on a particular triangle and
vanish on all others. Their numbering is induced by that of the triangles.

For each vertex p ∈ V(M) of the mesh, define Mp as the set of triangles that have p as a vertex,
write ωp ⊂ Ω for the union (of the closures) of these triangles, and |ωp| for its area.

The so-called gradient recovery operator

R : S0
1 (M) → (S0

1 (M))2 (0.4.1a)

is defined by

(RuN)(p) :=
1

|ωp|
∑

K∈Mp

|K|(graduN

∣∣
K
)(p) for every p ∈ V(M). (0.4.1b)

Here, graduN

∣∣
K

refers to the value of graduN on the triangle K.

(0.4a) [I, 5 points] Explain, why (0.4.1a)–(0.4.1b) is a valid definition of R.

(0.4b) [I, 12 points] Show that for all uN ∈ S0
1 (M)∫

Ω

(RuN)(x) dx =

∫
Ω

graduN(x) dx.

HINT: For f ∈ P1(K) it holds:∫
K

f(x) dx = 1
3
|K|

(
f(a1) + f(a2) + f(a3)

)
. (0.4.2)

with a1, a2 and a3 the vertices of the triangle K.

(0.4c) [I, 5 points] You read the statement

R linearly (a) maps linear (b) Lagrangian finite element functions into piecewise
linear (c) vector-fields.

Explain the meanings of “linear” at occurrences (a), (b), and (c).

(0.4d) [I, 10 points] Compute the matrix representation of grad : S0
1 (M) → (S−1

0 (M))2

for the mesh displayed in Figure 0.2 using the vertex and cell numbering given there. Use the
following ordered basis of (S−1

0 (M))2:{(
q1
0

)
,

(
0

q1

)
,

(
q2
0

)
,

(
0

q2

)}
, (0.4.3)

Exam Winter 2014 Page 10 Problem 0.4

where qi is the characteristic function of the ith triangle.

Figure 0.2: Simple triangular mesh to be used in subproblems (0.4d) and (0.4e): À–Ã give the
numbers of vertices, Ê, Ë the numbers of triangles.

(0.4e) [I, 10 points] Let R ∈ R8,4 denote the matrix representation of R for the simple mesh
from Figure 0.2. As basis for (S0

1 (M))2 use{(
b1N
0

)
,

(
0

b1N

)
,

(
b2N
0

)
,

(
0

b2N

)(
b3N
0

)
,

(
0

b3N

)
,

(
b4N
0

)
,

(
0

b4N

)}
, (0.4.4)

where biN is the tent function associated with the ith vertex of the mesh, see Figure 0.2 for the
numbering. Compute the first column of R.

(0.4f) [I, 12 points] Implement an efficient LehrFEM-style MATLAB function

function parea = get Vertex Region Areas(Mesh)

that expects a simple LehrFEM mesh data structure (Mesh.Coordinates and Mesh.Elements
only) in the argument Mesh and returns a row vector of size N , N := ♯V(M), whose ith entry
contains |ωp|, if p ∈ V(M) is the ith vertex of the mesh.

HINT: Use the given function area = ElemArea(Vertices) which computes the area of
the triangle with vertex coordinates contained in the 3× 2-matrix Vertices.
The symbol ♯ denotes the number of elements of a set.

(0.4g) [20 points] Write an efficient LehrFEM-style MATLAB function

function ug = avg gradient(Mesh,u)

Exam Winter 2014 Page 11 Problem 0.4

that returns the 2N -vector, N := ♯V(M), of basis expansion coefficients for RuN in ug, when
Mesh passes a simple LehrFEM mesh data structure, and uN ∈ RN the coefficient vector of
uN ∈ S0

1 (M). As basis for (S0
1 (M))2 we use{(

b1N
0

)
,

(
0

b1N

)
,

(
b2N
0

)
,

(
0

b2N

)
, . . .

(
bN−1
N

0

)
,

(
0

bN−1
N

)
,

(
bNN
0

)
,

(
0

bNN

)}
, (0.4.5)

where biN is the tent function associated with vertex i.

HINT: You can use the LehrFEM function grad shap LFE to evaluate the gradients of the local
shape functions on the reference element.

(0.4h) [I, 10 points] We consider a sequence Mi, i ∈ N0, of triangular meshes of Ω obtained
by successive uniform regular refinement of an initial mesh M0. Denote by Ii for the nodal
interpolation operator Ii : C0(Ω) → S0

1 (Mi). Further, write Ri : S0
1 (Mi) → (S0

1 (Mi))
2 for the

gradient averaging operator according to (0.4.1b) on Mi.

For Ω the equilateral triangle with vertices
(
0
0

)
,
(
1
0

)
, and

(1
2

1
2

√
3

)
and f(x) := exp(∥x∥2), Table 0.1

lists the “errors” ∥grad Iif − grad f∥L2(Ω) and ∥RiIif − grad f∥L2(Ω) as functions of the mesh-
width of Mi for some meshes of the family.

Describe qualitatively and quantitatively the convergence of the “error norms” in terms of the
meshwidth h that can be concluded from the experimental data.

HINT: The data of Table 0.1 are available as the MATLAB file tab.dat, to be loaded with the
command load(’tab.mat’). The variable tab.dat is a struct with three fields: tab.h
contains the meshwidth data, tab.err1 contains the errors ∥grad Iif − grad f∥L2(Ω) and
tab.err2 contains the errors ∥RiIif − grad f∥L2(Ω).

mesh meshwidth h ∥grad Iif − grad f∥L2(Ω) ∥RiIif − grad f∥L2(Ω)

M1 0.1250 0.1337 0.0975
M2 0.0625 0.0671 0.0380
M3 0.0313 0.0336 0.0141
M4 0.0156 0.0168 0.0051
M5 0.0078 0.0084 0.0018
M6 0.0039 0.0042 0.0007

Table 0.1: Measured “errors” for (recovered) gradients of piecewise linear interpolants

Listing 0.7: Testcalls for Problem 0.4
1 c l e a r Mesh;
2

3 Mesh.Coordinates = [0 0; 1 0; 0.5 s q r t(3)/2];
4 Mesh.Elements = [1 2 3];
5

6 Mesh = add_Edges(Mesh);
7 Loc = get_BdEdges(Mesh);
8 Mesh.BdFlags = z e r o s(s i z e(Mesh.Edges,1),1);
9 Mesh.BdFlags(Loc) = -1;

Exam Winter 2014 Page 12 Problem 0.4

10 Mesh.ElemFlag = ones(s i z e(Mesh.Elements,1),1);
11 Mesh = add_Edge2Elem(Mesh);
12 Mesh = refine_REG(Mesh);
13 Mesh = refine_REG(Mesh);
14

15 F = @(x) exp(x(:,1).ˆ2+x(:,2).ˆ2);
16

17 f p r i n t f(’\n##get_Vertex_Region_Areas’);
18 areas = get_Vertex_Region_Areas(Mesh)
19

20 u = F(Mesh.Coordinates);
21 f p r i n t f(’\n##avg_gradient’);
22 ug = avg_gradient(Mesh,u)

Listing 0.8: Output for Testcalls for Problem 0.4
1 test_calls
2

3 >> test_call
4

5 ##get_Vertex_Region_Areas14 end
6

7 areas =
8

9 Columns 1 through 10
10

11 0.0271 0.0271 0.0271 0.0812 0.0812 0.0812
0.0812 0.0812 0.0812 0.0812

12

13 Columns 11 through 15
14

15 0.0812 0.0812 0.1624 0.1624 0.1624
16

17 ##avg_gradient
18 ug =
19

20 0.2580
21 0.1489
22 3.8529
23 0.0779
24 1.9939
25 3.2978
26 1.3775
27 0.2383
28 0.8951
29 1.0739
30 2.4547
31 1.4172
32 0.5677
33 0.2080

Exam Winter 2014 Page 13 Problem 0.4

34 0.4640
35 0.3876
36 3.1635
37 0.5832
38 2.8519
39 0.2960
40 1.6824
41 2.3218
42 2.0868
43 2.4481
44 0.9687
45 0.5593
46 2.0892
47 0.7237
48 1.6714
49 1.4475

References

[NPDE] Lecture Slides for the course “Numerical Methods for Partial Differential Equations”,
SVN revision # 62366.

[NCSE] Lecture Slides for the course “Numerical Methods for CSE”.

[LehrFEM] LehrFEM manual.

Exam Winter 2014 Page 14 REFERENCES

