
S. Mishra
L. Scarabosio
J. Šukys
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The exam consists of 100 points + 10 bonus points.
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Slightly harder sub-problems are marked with an asterisk symbol *.

Problem 1 Stationary Diffusion problem [40 points]
We consider the following two-dimensional diffusion problem:

−∇ ·
((
x2 + y2 + 1

)
∇u(x)

)
= f(x), x ∈ Ω = (0, 1)2, (1.1)

u|ΓD
(x) = 0, x ∈ ΓD, (1.2)

∂u

∂n

∣∣∣∣
ΓN

(x) = 0, x ∈ ΓN , (1.3)

where x = (x, y), f ∈ L2(Ω) and the domain boundary ∂Ω is the (disjoint) union of a Dirichlet
part ΓD and a Neumann part ΓN , as depicted in Figure 1.1.

Figure 1.1: Domain for Problem 1.

(1a) Write the variational formulation for (1.1)-(1.3).

HINT: Don’t forget to specify trial and test spaces.
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(1b) Specify the bilinear form and linear form in the variational formulation obtained in the
previous subtask.

(1c) Show that the variational formulation from subproblem (1a) admits a solution and the
solution is unique.

HINT: Use the Lax-Milgram lemma.

HINT: The Poincaré inequality holds.

(1d) Give an a priori upper bound for |u|H1(Ω), where u is the solution to the variational for-
mulation from subsproblem (1a).

HINT: Use the Lax-Milgram lemma.

We now want to compute an approximate solution to (1.1)-(1.3) using linear finite elements (LFE)
on a triangular mesh.

(1e) Compute the stiffness element matrix (i.e. the element matrix associated to the bilinear

form) on the reference element K̂, that is, on the triangle with vertices x̂1 =

(
0
0

)
, x̂2 =

(
1
0

)
and x̂3 =

(
0
1

)
.

For the computation of the integrals, use the 2nd-order quadrature rule on triangles:∫
T

h(x) dx ≈ Vol(T )
3

(h(x1) + h(x2) + h(x3)), (1.4)

where T is a generic triangle, h is a continuous function on T and x1,x2,x3 are the three vertices
of T .

(1f) Consider now the assembly of the stiffness matrix. Denote by NEl the number of triangles
in the mesh, by idx the global indices of the vertices of a generic triangle Ki (i = 1, . . . , NEl),
by AKi

the element stiffness matrix for the triangle Ki and by A the global stiffness matrix.
Complete line 4 of the following routine that assembles the stiffness matrix: which entries of the
global matrix A have to be selected? which are the addends on the right-hand side of this line?

1: for i=1:NEl do
2: Extract global indices of vertices of element Ki → idx
3: Compute element stiffness matrix for Ki → AKi

4: A(... , ... ) = ... + ...
5: end for

In line 4, the notation A(... , ... ) can be used not only to extract single entries of the matrix, but
also to extract a submatrix: for example, if vec=[1,10,20], then A(vec ,vec) denotes the
3× 3 submatrix of A containing the elements with row and column index contained in vec.

(1g) Suppose now that the boundary condition (1.2) is replaced by

u|ΓD
(x) = g,x ∈ ΓD, (1.5)

with g a continous function on ΓD. In other words, we replace the homogeneous Dirichlet bound-
ary conditions with inhomogeneous Dirichlet boundary conditions.
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Let NV be the total number of mesh vertices and NV,D the number of vertices which are on the
Dirichlet boundary ΓD. Let D be the array of length NV,D containing the indices of the vertices
which are on the Dirichlet boundary and FreeDofs the array of length NV −NV,D containing the
indices of all the other vertices, that is the vertices which are not on ΓD.
We denote by µ ∈ RNV the column vector containing the coefficients of the discrete solu-
tion uN with respect to the basis functions associated to all the mesh vertices. Then we have

µ =

(
µFreeDofs

µD

)
, with µD ∈ RNV,D the coefficients with respect to the basis functions associated

to nodes on ΓD, and µFreeDofs ∈ RNV −NV,D the coefficients with respect to the remaining basis
functions. Finally, let xD ∈ RNV,D×2 the matrix containing the coordinates of the Dirichlet nodes
(each row corresponding to a node).
Let us denote by A ∈ RNV ×NV the global stiffness matrix and by L ∈ RNV the global load vector,
both computed considering the basis functions of H1(Ω) associated to all the mesh vertices.

The following pseudocode computes the discrete finite element solution to (1.1) (i.e. the coeffi-
cient vector µ), with nonhomogeneous boundary conditions given by (1.5) and Neumann bound-
ary conditions as before ((1.3)). This pseudocode contains an error: which one? Write clearly the
correction that has to be made in order to get the correct discrete solution.

1: Compute global stiffness matrix → A
2: Compute global load vector → L
3: Extract indices on ΓD → D
4: Extract coordinates of vertices with index in D → xD

5: Initialize µ: µ =0 ∈ RNV

6: Initialize µD: µD = g(xD)
7: Solve A(FreeDofs,FreeDofs)µFreeDofs = L(FreeDofs)

(In the last line A(FreeDofs,FreeDofs) denotes the part of the stiffness matrix associated to both
test and trial functions relative to the nodes FreeDofs, and similarly L(FreeDofs) denotes the part
of the load vector associated to the test functions relative to the nodes FreeDofs.)

(1h) Suppose that the exact solution to the variational formulation from subproblem (1a) is
smooth. The two double logarithmic (loglog) plots in Figure 1.2 show respectively the results
of the convergence studies of the L2-norm and H1-seminorm of the error with respect to the
meshwidth h. For each of the two plots, which is the line showing the right convergence rate?

Problem 2 Convergence of Finite Element Solutions [15 points]
A student is testing his implementation of a finite element method. On the square domain Ω =
(0, 1)2 he considers the 2nd-order elliptic boundary value problem

−∆u = 1 in Ω,

u =
1

4

(
1− ∥x∥2

)
on ∂Ω.

(2.1)

He computes an approximate solutions uN by means of a finite element Galerkin method using
linear (piecewise first order polynomials) and quadratic (piecewise second order polynomials)
finite elements, denoted by LFE and QFE respectively, on a sequence of triangular meshes M.

The following table lists the measured H1(Ω)-seminorm of the discretization error as a function
of the meshwidth h.
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Figure 1.2: Convergence plots for subproblem (1h).

h 0.70 0.35 0.17 0.088 0.044 0.022 0.011
LFE 0.10 0.051 0.025 0.012 0.0064 0.0032 0.0008
QFE 1.75·10−16 1.24·10−15 5.71·10−15 2.29·10−14 8.91·10−14 3.53·10−13 1.41·10−12

(2a) Show that u(x) = 1
4
(1− ∥x∥2) is the exact solution of (2.1)

(2b) What kind of convergence (qualitative and quantitative) for linear Lagragian finite ele-
ments can be inferred from the error table?

(2c) *Explain the striking difference between the behavior of the discretization error for linear
and quadratic Lagrangian finite elements.

Problem 3 Radiative Cooling in 1D [15 points]
This problem is dedicated to the full spatial and temporal discretization of a 2nd-order parabolic
evolution problem.

In a homogeneous “1D body” occupying the space Ω := (0, 1), the evolution of the temperature
distribution u = u(x, t) with convective cooling is modelled by the linear second-order parabolic
initial-boundary value problem (IBVP) with flux (spatial) boundary conditions

∂u

∂t
− ∂2u

∂x2
= 0 in Ω× (0, T ],

∂u

∂n
+ γu = 0 on ∂Ω× (0, T ],

u(x, 0) = u0(x) on Ω× {0},

(3.1)

with γ > 0 constant.
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Notice that the boundary condition given in the second equation in (3.1) can be rewritten as

∂u

∂n
+ γu =

∂u

∂x
+ γu = 0 on {1} × (0, T ]

∂u

∂n
+ γu =

∂u

∂(−x)
+ γu= −∂u

∂x
+ γu = 0 on {0} × (0, T ].

(3.2)

(3a) Let E(t) be the energy of the solution u(x, t) to (3.1) at time t > 0, i.e.

E(t) :=
1

2

∫
Ω

(u(x, t))2 dx. (3.3)

Show that the solution u(x, t) to (3.1) satisfies the energy inequality

E(t) ≤ E(0) for all t > 0. (3.4)

HINT: Differentiate E(t) with respect to time t and then use (3.1) and integration by parts

Next, we aim to discretize (3.1) using finite differences coupled with the a time stepping scheme.

To discretize the spatial domain Ω = (0, 1), we subdivide the interval [0, 1] in N + 1 subintervals
using equispaced grid points {x0 = 0, x1, . . . , xN , xN+1 = 1}. Let us denote by h = |x1 − x0|
the mesh size. To discretize the time domain [0, T ], consider M ∈ N equispaced time points

t0 = 0, t1, . . . , tM = T,

and denote the time step size by ∆t := |tn+1 − tn| = T/M . Then, at a time point t with
n = 0, . . . ,M − 1, the solution u(xj, tn) at point xj and at time tn is denoted by Un

j .

(3b) Write the fully discrete numerical scheme for (3.1) using central differences in space and
the explicit Euler time stepping in time.

(3c) Suppose that we have implemented the numerical scheme deduced in subproblem (3b),
and now we run it with ∆t = h. Monitoring the energy En at each time step tn, n = 0, . . . ,M−1,
we observe that En → ∞ as n → ∞. What is the reason for this blowup?

(3d) To make another test, we change the numerical scheme and discretize (3.1) using again
central differences in space but now the implicit Euler time stepping. Again, we run our code
with ∆t = h and this time we observe that the energy does not explode as time passes, and our
scheme fulfills the discrete version of the energy inequality (3.3), i.e.

En ≤ E0 (3.5)

with

En =
1

2

N∑
j=1

(Un
j )

2, (3.6)

for every n = 0, . . . ,M − 1.

Explain why this time our numerical scheme is stable even choosing ∆t = h.
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Problem 4 Recasting Burgers’ Equation [25 points]
Burgers’ equation reads

∂u

∂t
+

∂

∂x

(
1

2
u2

)
= 0 on R× (0, T ] (4.1)

Assuming smoothness of u, an equivalent formulation for w = u2 is

∂w

∂t
+

∂

∂x

(
2

3
w3/2

)
= 0 on R× (0, T ] (4.2)

(4a) Show that if u is continuously differentiable (i.e. u is C1) in both space and time, and
solves (4.1) with initial condition u(x, 0) = u0(x) > 0 for all x ∈ R, then w(x, t) := u(x, t)2

solves (4.2).

HINT: Since u0(x) > 0 for all x ∈ R, then, by the maximum principle, u(x, t) > 0 for all
(x, t) ∈ R× (0, T ]. Then the proof boils down to clever use of the chain rule.

(4b) What is the flux function for (4.2)? Show that it is convex.

(4c) Determine the entropy solutions of (4.1) and (4.2) for the Riemann problems

u0(x) =

{
2, x < 0,

1, x > 0
w0(x) =

{
4, x < 0

1, x > 0.

(4d) Determine the entropy solutions of (4.1) and (4.2) for the Riemann problems

u0(x) =

{
1, x < 0,

2, x > 0
w0(x) =

{
1, x < 0

4, x > 0.

(4e) *Compare the solutions of the two Riemann problems studied in subproblems (4c)–(4d).
Comment on your findings in light of subproblem (4a) and try to find an explanation for the
baffling mismatch.

We now want to discretize (4.1) (with some initial conditions) using a Finite Volume scheme in
space and the implicit Euler scheme in time. To this aim, we solve the PDE (4.1) in the interval
[0, 1], considering the discrete points xj =

(
j + 1

2

)
h for j = 0, . . . , N , where h = 1

N+1
; we also

define the midpoint values xj− 1
2
= xj− h

2
= jh, for j = 0, . . . , N (the extension of the solution to

the whole space R can be done using periodic boundary conditions, but you don’t have to worry
about this). The midpoint values define the control volumes

Cj = [xj− 1
2
, xj+ 1

2
),

with xj the center of the control volume Cj , for j = 0, . . . , N .

To discretize the time domain [0, T ], consider M ∈ N equispaced time points

t0 = 0, t1, . . . , tM = T,

and denote the time step size by ∆t := |tn+1 − tn| = T/M .
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We denote by Un
j the approximate cell average of u in the control volume Cj and the time tn, i.e.

Un
j ≈ 1

h

∫ x
j+1

2

x
j− 1

2

u(x, tn) dx. (4.3)

At the control volume interfaces, we use the Lax-Friedrichs numerical flux

F n
j+ 1

2
(Uj, Uj+1) =

f(Un
j ) + f(Un

j+1)

2
− h

2∆t

(
Un
j+1 − Un

j

)
. (4.4)

(4f) Using the indications above, write the fully discrete and stable numerical scheme to com-
pute the generic cell average Un+1

j in the control volume Cj , j = 1, . . . , N (i.e. in a control
volume not containing a boundary point), at time tn+1, n = 1, . . . ,M (so that you don’t have to
care about initial conditions).

Problem 5 Transport in One Dimension [15 points]
Consider the one-dimensional linear transport equation:

Ut + (a(x)U)x = 0, ∀(x, t) ∈ R× [0, 1],

U(x, 0) = U0(x), ∀x ∈ R,
(5.1)

with coefficient a(x) ∈ C1(R).

(5a) Write down the equation for characteristics of (5.1). Use it to derive an expression for the
exact solution.

HINT: Assume that a is an increasing function of x.

(5b) Let U(x, t) be a smooth solution of (5.1), that decays to zero at infinity. Then show that
U satisfies the energy bound ∫

R
U2(x, T )dx ≤ eCT

∫
R
U2
0 (x)dx, (5.2)

for all T > 0, with constant C depending on ∥a∥C1 .

HINT: The Gronwall’s inequality may come into help: Let β(t) be continuous and u(t) be differ-
entiable on some interval [a, b], and assume that

u′(t) ≤ β(t)u(t) ∀t ∈ (a, b).

Then

u(t) ≤ u(a) exp

(∫ t

a

β(τ) dτ

)
∀t ∈ [a, b].

(5c) Consider the equation (5.1) on the domain D = (0, 1) with periodic boundary condi-
tions and a = −1. Denoting by Un

j the numerical cell average for the generic cell j at a
generic time tn, write a stable numerical scheme to simulate (5.1) (given suitable initial conditions
u(x, T = 1) = u0(x)).
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