Course 401-0674-00L: NPDE Midterm, 2013-04-19
 Prof. Ralf Hiptmair

Don't panic! Good luck!

Problem 1 Energy Norm and Continuity [4 points]

On a function space V_{0} we consider a linear variational problem

$$
\begin{equation*}
u \in V_{0}: \quad \mathrm{a}(u, v)=\ell(v) \quad \forall v \in V_{0}, \tag{1.1}
\end{equation*}
$$

with

- a symmetric, positive definite bilinear form a : $V_{0} \times V_{0} \mapsto \mathbb{R}$,
- a right hand side linear form $\ell: V_{0} \mapsto \mathbb{R}$ that satisfies

$$
|\ell(v)| \leq C_{\ell}\|v\|_{a} \quad \text { for some } C_{\ell}>0
$$

where $\|\cdot\|_{a}$ is the energy norm induced by a.
(1a) [2 points] Show that the solution u of (1.1) satisfies $\|u\|_{a} \leq C_{\ell}$.
(1b) [2 points] Show that $\frac{1}{2} \mathrm{a}(v, v)-\ell(v) \geq-\frac{1}{2}\|u\|_{a}^{2}$ for all $v \in V_{0}$, when u solves (1.1).

Problem 2 Robin Boundary Conditions [5 points]

We consider the linear 2nd-order elliptic boundary value problem

$$
\begin{equation*}
-\Delta u=f \quad \text { in } \Omega \subset \mathbb{R}^{d} \quad, \quad \operatorname{grad} u \cdot \boldsymbol{n}+\lambda u=0 \quad \text { on } \partial \Omega \tag{2.1}
\end{equation*}
$$

(2a) [3 points] State the variational formulation for (2.1).
HINT: For the derivation you may use Green's formula

$$
\int_{\Omega} \mathbf{j} \cdot \operatorname{grad} u+u \operatorname{div} \mathbf{j} \mathrm{~d} \boldsymbol{x}=\int_{\partial \Omega} u \mathbf{j} \cdot \boldsymbol{n} \mathrm{~d} S, \quad \begin{array}{ll}
\mathbf{j}: \Omega \mapsto \mathbb{R}^{d}, \\
u: \Omega \mapsto \mathbb{R}
\end{array}
$$

(2b) [2 points] Based on the variational formulation, argue why (2.1) has a unique (weak) solution.

Problem 3 One-Dimensional Convection [8 points]

Let \mathcal{M} be an equidistant mesh of $] 0,1[$ with $M \in \mathbb{N}$ cells and consider the bilinear form

$$
\begin{equation*}
\mathrm{b}(u, v):=\int_{0}^{1} \frac{\mathrm{~d} u}{\mathrm{~d} x}(x) v(x) \mathrm{d} x, \quad u, v \in H_{0}^{1}(] 0,1[) \tag{3.1}
\end{equation*}
$$

For its Galerkin discretization we use the space $\mathcal{S}_{1,0}^{0}(\mathcal{M}) \subset H_{0}^{1}(] 0,1[)$ of piecewise linear Lagrangian finite elements on \mathcal{M} equipped with the standard nodal basis of "tent functions" arranged in lexicographic order "from left to right" . Let B denote the Galerkin matrix of b w.r.t. $\mathcal{S}_{1,0}^{0}(\mathcal{M})$.
(3a) [1 points] Explain why the number of non-zero entries of \mathbf{B} behaves like $\mathcal{O}(M)$ as $M \rightarrow \infty$.
(3b) [3 points] Compute the element matrix for b for an interior cell of \mathcal{M}.
Hint: The element matrices are not symmetric!
\square
(3c) [4 points] Compute the Galerkin matrix B.

Problem 4 Efficient Matrix-Vector Multiplication [8 points]

In the course we have seen that the assembly of a finite element Galerkin matrix can be accomplished by means of the MatLab function assembleFEMatrix from Listing 4.1, provided that proper implementations of the functions getElementMatrix and locglobmap are available

Listing 4.1: Abstract assembly routine for finite element Galerkin matrices

```
function A = assembleFEMatrix(Mesh)
    A = sparse (0,0); maxidx = 0; % Allocate empty sparse matrix
    for k = Mesh.Elements' % loop over all cells
```

```
    % Local computation of element matrix for the k}\mp@subsup{k}{}{th}\mathrm{ cell
    Ak = getElementMatrix(k);
    % Get row vector of global indices
    idx = locglobmap(k,(1:size (Ak, 1)));
    % Grow matrix, if necessary
    maxtmp = max([idx,maxidx]);
    if (maxtmp > maxidx), maxidx = maxtmp;
        A(maxidx,maxidx) = 0; end
        % Add local contributions to global matrix; passing a vector
        % of indices selects submatrix!
        A(idx,idx) = A(idx,idx) + Ak;
    end
end
```

(4a) [2 points] Explain why the implementation of assembleFEMatrix given in Listing 4.1 performs poorly in terms of runtime.
\square
(4b) [6 points] Assuming that the function assembleFEMatrix from Listing 4.1 performs assembly correctly, supplement the missing line 6 in the function amux of Listing 4.2 so that it returns the result of the multiplication of the Galerkin matrix with a vector $\overrightarrow{\boldsymbol{\xi}}$ of suitable length, without ever forming the Galerkin matrix.

Listing 4.2: Multiplication of finite element Galerkin matrix with a vector

```
function y = amux(Mesh,xi)
    y = zeros(length(xi));
    for k = Mesh.Elements'
        Ak = getElementMatrix(k);
        idx = locglobmap(k,(1:size(Ak,1)));
        % ???
    end
end
```

