Serie 23

SATZ VOM PRIMITIVEN ELEMENT UND GALOISERWEITERUNGEN

- 1. Finde ein primitives Element der Erweiterung L von K in den folgenden Fällen:
 - (a) $K = \mathbb{Q}$ und $L = \mathbb{Q}(\sqrt[4]{2}, i)$.
 - (b) $K = \mathbb{Q}$ und $L = \mathbb{Q}(\sqrt{2}, \sqrt[3]{2})$.
 - (c) $K = \mathbb{C}(t, u)$ mit t, u algebraisch unabhängig über \mathbb{C} und $L = K(\alpha, \beta)$, wobei α eine Nullstelle des Polynoms $X^n t$ und β eine Nullstelle von $X^m u$ ist.
- *2. Sei K ein Körper der Charakteristik p > 0, und sei \overline{K} ein algebraischer Abschluss von K.
 - (a) Zeige: Für jede algebraische Erweiterung der Form L = K(A) von K sind äquivalent:
 - (i) Für jedes $a \in L$ existiert ein $r \ge 0$ mit $a^{p^r} \in K$.
 - (ii) Für jedes $a \in A$ existiert ein $r \geqslant 0$ mit $a^{p^r} \in K$.
 - (iii) $|\operatorname{Hom}_K(L, \overline{K})| = 1.$

Eine Körpererweiterung L/K mit diesen Eigenschaften heisst rein inseparabel oder total inseparabel oder radiziell.

- (b) Zeige: Für jeden algebraischen Körperturm M/L/K ist M/K rein inseparabel genau dann, wenn M/L und L/K rein inseparabel sind.
- 3. Zeige, dass die Substitutionen $t\mapsto 1/t$ und $t\mapsto 1-t$ eine endliche Untergruppe G der Automorphismengruppe des rationalen Funktionenkörpers $L:=\mathbb{Q}(t)$ erzeugen. Bestimme den Fixkörper $K:=L^G$ in der Form $K=\mathbb{Q}(s)$ sowie das Minimalpolynom von t über K.
- 4. Sei $f \in K[X]$ irreduzibel und separabel und sei L ein Zerfällungskörper von f über K. Zeige: Ist $\operatorname{Gal}(L/K)$ abelsch, so ist L = K(a) für eine beliebige Nullstelle $a \in L$ von f.