Prof. Peter S. Jossen

Exercise Sheet 10

1. Let $X_{\tau} = \mathbb{C}^g/\Lambda_{\tau}$ be an abelian variety with $\Lambda_{\tau} = \tau \mathbb{Z}^g \oplus \Delta \mathbb{Z}^g$, where $\tau \in \mathcal{H}_g$ and $\Delta = \operatorname{diag}(d_1, \ldots, d_g)$ has integer entries $d_j > 0$ such that $d_j | d_{j+1}$. For each $a, b \in \mathbb{R}^g$, we consider the Riemann theta function $\vartheta \begin{bmatrix} a \\ b \end{bmatrix} (\cdot, \tau) : \mathbb{C}^g \longrightarrow \mathbb{C}$ defined by

$$\vartheta \begin{bmatrix} a \\ b \end{bmatrix} (z,\tau) := \sum_{m \in \mathbb{Z}^g} \exp i\pi ({}^t(m+a)\tau(m+a) + 2^t(m+a)(z+b)).$$

- a) Check that $\vartheta \begin{bmatrix} a \\ 0 \end{bmatrix} (\cdot, \tau)$ is a theta function for Λ_{τ} for $a \in \Delta^{-1}\mathbb{Z}^g$.
- **b)** Express the automorphy factor of $\vartheta \begin{bmatrix} a \\ 0 \end{bmatrix} (\cdot, \tau)$ in terms of the following data:

$$\omega(\tau p + q, \tau p' + q') = {}^{t}p'q - {}^{t}q'p,$$

$$H(z, z') = {}^{t}\bar{z}(\operatorname{Im}\tau)z,$$

$$(H - B)(\tau p + \Delta q) = -2i{}^{t}pz,$$

$$\alpha(\tau p + \Delta q) = (-1)^{tp\Delta q},$$

$$\ell = 0$$

Deduce that $\vartheta \begin{bmatrix} a \\ 0 \end{bmatrix} (\cdot, \tau)$ is associated with the line bundle $L_{\tau} := L(H, \alpha)$ over X_{τ} [Hint: See Remark 6.5 from Debarre's book]

c) Show that if $d_1 \geq 2$, then for every z and τ there exists $a \in \Delta^{-1}\mathbb{Z}^g$ such that $\vartheta \begin{bmatrix} a \\ 0 \end{bmatrix} (z,\tau) \neq 0$. [Hint: Use Lefschetz's Theorem]

Let m be an integer dividing d_1 . Define $\alpha_m(\tau p + \Delta q) := (-1)^{\frac{1}{m}t_p\Delta q}$ for $p, q \in \mathbb{Z}^g$.

- **d)** Show that the pair $(\frac{1}{m}H, \alpha_m)$ is the type of a line bundle M_{τ} over X_{τ} such that $M_{\tau}^{\otimes m} = L_{\tau}$.
- e) Prove that the $z \mapsto \vartheta \begin{bmatrix} a \\ 0 \end{bmatrix} (\frac{z}{m}, \frac{\tau}{m})$ are theta functions associated with M_{τ} for $a \in m\Delta^{-1}\mathbb{Z}^g/\mathbb{Z}^g$.

2. Let r be an integer. Find an invertible matrix with coefficients independent of z and τ which transforms the r^{2g} functions

$$\vartheta \left[\begin{array}{c} a \\ 0 \end{array} \right] (rz,\tau), \ a \in \frac{1}{r^2} \mathbb{Z}^g / \mathbb{Z}^g$$

into the r^{2g} functions

$$\vartheta \left[\begin{array}{c} a \\ b \end{array} \right] (r^2 z, r^2 \tau), \ a, b \in \frac{1}{r^2} \mathbb{Z}^g / \mathbb{Z}^g.$$

- **3.** Let G be a finite subgroup of $GL_n(\mathbb{C})$.
 - a) Find an example in which G is not generated by pseudoreflections, and show that $G \backslash \mathbb{C}^n$ is singular.
 - **b)** Find an interesting example in which G is generated by pseudoreflections, and show that $G \setminus \mathbb{C}^n$ is not singular.
 - c) What happens if n = 1?