D-MATH Prof. Peter S. Jossen

1. Let ω be a closed 2-form on a complex torus $X = V/\Lambda$. For a fixed basis $\{x_j\}$ of Λ , write

$$\omega(x) = \sum_{j < k} \omega_{jk}(x) dx_j \wedge dx_k,$$

where the ω_{jk} are Λ -periodic functions, so that they can be expanded into Fourier series with respect to $\{x_j\}$:

$$\omega_{jk}(x) = \sum_{m \in \mathbb{Z}^g} \omega_{jk}^{(m)} e^{2i\pi^t m x}, \ \ \omega_{jk}^{(m)} \in \mathbb{C}.$$

(a) Set, for each $m \in \mathbb{Z}^g$,

$$\omega^{(m)} := \sum_{j < k} \omega_{jk}^{(m)} e^{2i\pi^t m x} dx_j \wedge dx_k.$$

Show that $\omega^{(m)}$ is a closed 2-form on X.

- (b) Show that $\omega^{(m)}$ is an exact 2-form on X for any $m \neq 0$. Conclude that ω is cohomologous to a constant form.
- **2.** Let $n \in \mathbb{Z}_{>0}$ and consider the canonical projection $p : \mathbb{C}^{n+1} \setminus \{0\} \longrightarrow \mathbb{P}^n$. For $j = 0, \ldots, n$, let $U_j = \{ [x_0 : \cdots : x_n] \in \mathbb{P}^n | x_j \neq 0 \}$, and consider the standard charts

$$\phi_j : \mathbb{C}^n \xrightarrow{\iota_j} \{ (x_0, \dots, x_n) \in \mathbb{C}^{n+1} : x_j = 1 \} =: \tilde{U}_j \xrightarrow{p} U_j$$
$$(x_0, \dots, x_{j-1}, x_{j+1}, \dots, x_n) \mapsto (x_0, \dots, x_{j-1}, 1, x_{j+1}, \dots, x_n)$$

of \mathbb{P}^n .

- (a) Let ω be a complex *r*-form on \mathbb{P}^n . Show that $p^*\omega(z)(v_1,\ldots,v_r)=0$ whenever either v_1 and z, or v_1 and \bar{z} are collinear.
- (b) Conversely, suppose that a complex *r*-form $\tilde{\omega}$ on $\mathbb{C}^{n+1} \setminus \{0\}$ is invariant under the action of \mathbb{C}^{\times} and has in addition the property in (*a*). Show that the differential forms $\iota_j^* \tilde{\omega}$ satisfy the appropriate compatibility conditions, and hence define a differential form on \mathbb{P}^n with $p^*(\omega) = \tilde{\omega}$.

3. Consider a positive integer n and write $||z||^2 = \sum_{j=0}^n z_j \bar{z}_j$. Then

$$\tilde{\omega} = \frac{i}{2\pi} \frac{||z||^2 \left(\sum_{j=0}^n dz_j \wedge d\bar{z}_j\right) - \left(\sum_{j=0}^n \bar{z}_j dz_j\right) \wedge \left(\sum_{k=0}^n z_k d\bar{z}_k\right)}{||z||^4}$$

defines a real, type (1,1) differential 2-form on \mathbb{P}^n , called the Fubini-Study form ω_{FS} .

- (a) Check that indeed $\tilde{\omega}$ meets the necessary conditions from Exercise 2.
- (b) Check that $\omega_{\rm FS} = \frac{i}{2\pi} \partial \bar{\partial} \log ||z||^2$.ⁱ
- (c) Prove that ω_{FS} is closed and invariant under the action of the unitary group U(n+1).
- 4. Prove that a countable intersection of open dense subsets of \mathbb{R}^N is dense.
- 5. Identify \mathbb{C}^g with \mathbb{R}^{2g} . To each invertible real matrix M, one associates the lattice Γ_M in \mathbb{C}^g generated by the columns of M. One thus parametrizes the set of lattices in \mathbb{C}^g by the open dense set (in the real Zariski topology) $U = \mathrm{GL}_{2g}(\mathbb{R}) \subseteq \mathbb{R}^{4g^2}$.
 - (a) Show that there is a countable family $(Z_n)_{n \in \mathbb{Z}_{>0}}$ of real algebraic hypersurfaces in \mathbb{R}^{4g^2} such that, for any matrix M in $U \setminus \bigcup_{n \in \mathbb{Z}_{>0}} Z_n$, the 2×2 minors in M^{-1} are linearly independent over \mathbb{Z} .
 - (b) Deduce: when $g \geq 2$ and $M \in U \setminus \bigcup_{n \in \mathbb{Z}_{>0}} Z_n$, the only bilinear, type (1, 1), alternating \mathbb{R} -form on \mathbb{C}^g which is integral on Γ_M is the trivial one.
 - (c) Conclude that a "very general" complex torus (in a sense to be made precise) of dimension ≥ 2 cannot be holomorphically embedded in projective space. (*Hint:* You might use Exercise 4).

ⁱGiven a differential form ω of type (p, q) over a complex manifold, it can be proved that it decomposes uniquely as a sum $d\omega = \partial \omega + \bar{\partial} \omega$, where $\partial \omega$ is of type (p+1, q) while $\bar{\partial} \omega$ is of type (p, q+1). This allows to define differential operators ∂ and $\bar{\partial}$. From $d^2 = 0$, one easily deduces that $\partial^2 = \bar{\partial}^2 = \partial \bar{\partial} + \bar{\partial} \partial = 0$.