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1. Let V ∼= Cg be a complex vector space and let Λ ⊆ V be a lattice. Prove that for an
entire function f : V −→ C the following conditions are equivalent:

i) f is a nowhere vanishing theta function on V associated to Λ;

ii) f(z) = eQ(z), where Q(z) is a polynomial of degree ≤ 2.

2. Consider a lattice Λ = Z⊕ τZ ⊆ C.

a) Prove that an entire function f : C −→ C is a theta function associated to Λ if
and only if (f ′/f)′ is Λ-periodic.

Consider the Weierstrass σ-function
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b) Prove that σ is a theta function associated to Λ. Find its type.

c) Find the divisor of σ.

Consider the Riemann theta functions with respect to Λ, defined for a, b ∈ R as
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d) For a, b, a′, b′ ∈ R, express the divisor of ϑ
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, considered as a subset of C, as
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e) Find the divisor of ϑ
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for each a, b ∈ R.

f) Show that there exist constants u, v ∈ C such that, for any z ∈ C,
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