Exercise Sheet 4

- 1. Show that for a "very general" complex torus $X = V/\Lambda$ (see Exercise 5 from Exercise Sheet 2) of dimension at least 2, any theta function associated to Λ is trivial and any meromorphic function on X is constant.
- **2.** Let W be a complex vector space of dimension n. For any integer $d \leq n$, consider the set

$$G(d, W) := \{ V \le W | \dim_{\mathbb{C}}(V) = d \}.$$

Notice that $G(1, W) = \mathbb{P}W$.

- a) Explain how G(d, W) can be seen as
 - (i) a topological space.
 - (ii) a complex manifold (*Hint:* for every $U \in G(n d, W)$ we can identify the subset $\{\Pi \in G(d, W) \mid \Pi \cap U = 0\}$ of G(d, W) with $\operatorname{Hom}(W/U, U)$).
 - (iii) a projective algebraic variety (*Hint:* it could help to solve the rest of the exercise beforehand).

The set G(d, W) is known as a *Grassmannian manifold*. What is its dimension?

- **b)** Construct a line bundle $L \longrightarrow G(d, W)$, for which the fiber over a point $\Pi \in G(d, W)$ is the line $\bigwedge^d \Pi$. We denote this line bundle by $\mathcal{O}_{G(d,W)}(-1)$.
- c) Prove that the map $u: G(d, W) \longrightarrow \mathbb{P}(\bigwedge^d W)$ sending $\Pi \mapsto \bigwedge^d \Pi$ is holomorphic and injective, and that $u^* \mathcal{O}_{\mathbb{P}(\bigwedge^d W)}(1) = \mathcal{O}_{G(d,W)}(1)$.
- **3.** Let W be a complex vector space and let m be an integer. Show that the vector space of global sections of $\mathcal{O}_{\mathbb{P}W}(m)$ is trivial when m < 0 and is isomorphic to the vector space of homogeneous polynomial functions of degree m on W when $m \ge 0$.
- 4. Let V be a complex vector space and let $\Lambda \subseteq V$ be a lattice. Consider the real dual $V^{\vee} = \operatorname{Hom}_{\mathbb{R}}(V, \mathbb{R})$ and its subset

$$\Lambda^{\vee} := \{ \phi \in V^{\vee} \, | \, \phi(\lambda) \in \mathbb{Z}, \forall \lambda \in \Lambda \}.$$

a) Prove that $f \mapsto \operatorname{Im}(f)$ defines an isomorphism $\operatorname{Hom}_{\overline{\mathbb{C}}}(V, \mathbb{C}) \xrightarrow{\sim} \operatorname{Hom}_{\mathbb{R}}(V, \mathbb{R})$, endowing V^{\vee} with the structure of a \mathbb{C} -vector space. Check that Λ^{\vee} is a lattice of V^{\vee} . We call $X^{\vee} := V^{\vee}/\Lambda^{\vee}$ the *dual torus of* $X = V/\Lambda$.

- **b)** Prove that if X is an abelian variety, so is X^{\vee} .
- c) Prove that if X admits a nonconstant meromorphic function, so does X^{\vee} .
- **d)** Let $X = \mathbb{C}^g / (\mathbb{Z}^g + \Omega \mathbb{Z}^g)$. For which Ω^{\vee} can we write $X^{\vee} = \mathbb{C}^g / (\mathbb{Z}^g + \Omega^{\vee} \mathbb{Z}^g)$? How do parts **b**) and **c**) translate in terms of Ω and Ω^{\vee} ?