Exercise Sheet 6

1. Let ω be an alternating non-degenerate integral bilinear form on a free \mathbb{Z}-module Λ. Prove that Λ has even rank and that there exists a \mathbb{Z}-basis \mathcal{B} of Λ for which the matrix of ω is of the form

$$
\left(\begin{array}{cc}
0 & \Delta \\
-\Delta & 0
\end{array}\right),
$$

where $\Delta=\operatorname{diag}\left(d_{1}, \ldots, d_{g}\right)$ and the d_{j} are positive integers satisfying $d_{j} \mid d_{j+1}$. Show that those integers depend only on Λ and ω.
2. (Morphisms to $\left.\mathbb{P}^{N}\right)^{1}$ Let X be a complex manifold. Consider the line bundle $\mathcal{O}(1)$ on \mathbb{P}^{N} with sections x_{0}, \ldots, x_{N}. Show:
a) If $\phi: X \longrightarrow \mathbb{P}^{N}$ is a morphism of complex manifolds, then $\phi^{*}(\mathcal{O}(1))$ is a line bundle on X, generated by the global sections $\phi^{*}\left(x_{0}\right), \ldots, \phi^{*}\left(x_{N}\right)$.
b) Conversely, if \mathcal{L} is a line bundle on X and $s_{0}, \ldots, s_{N} \in \Gamma(X, \mathcal{L})$ are global sections generating \mathcal{L}, then there exists a unique morphism $\phi: X \longrightarrow \mathbb{P}^{N}$ of complex manifolds such that $\mathcal{L} \cong \phi^{*}(\mathcal{O}(1))$ and $s_{j}=\phi^{*}\left(x_{j}\right)$ for each $j=0, \ldots, N$ under this isomorphism.
3. (Finding equations)
a) Question: Let X be an abelian variety and \mathcal{L} a line bundle generated by its global sections, so that we have a morphism $\phi: X \longrightarrow \mathbb{P}^{N}$. Look at the projective variety $\phi(X)$. How can its polynomial equations be found in relation to theta functions?
b) Let $\Lambda \subseteq \mathbb{C}$ be a lattice, and consider the elliptic curve $E=\mathbb{C} / \Lambda$. Consider the Riemann theta functions with respect to Λ (see Exercise Sheet 3)

$$
\vartheta\left[\begin{array}{l}
a \\
b
\end{array}\right](z):=\sum_{m \in \mathbb{Z}} e^{2 \pi i\left(\frac{1}{2} \tau(m+a)^{2}+(m+a)(z+b)\right)},
$$

and for $j, k \in\{0,1\}$ define

$$
\vartheta_{j k}:=\vartheta\left[\begin{array}{l}
j / 2 \\
k / 2
\end{array}\right] .
$$

[^0]Look at the map $E \longrightarrow \mathbb{P}^{2}$ sending $z \mapsto\left(\vartheta_{00}(z) \vartheta_{11}(z)^{2}, \vartheta_{10}(z) \vartheta_{01}(z) \vartheta_{11}(z), \vartheta_{00}(z)^{3}\right)$. One can prove that it induces an isomorphism from E onto the smooth cubic with homogeneous equation

$$
Y^{2} Z=X(\alpha X-\beta Z)(\beta Z+\alpha Z)
$$

Look at O. Debarre, Complex Tori and Abelian Varieties, Proposition 2.12 and try to fill up the details of the proof. Explain what is happening.
4. Let $u: X \longrightarrow Y$ be a morphism of complex tori, and let L be a line bundle on Y. Show that the following diagram commutes:

[^0]: ${ }^{1}$ For a more general treatment, see R. Hartshorne, Algebraic Geometry, II, Theorem 7.1.

