Exercise Sheet 6

1. Let ω be an alternating non-degenerate integral bilinear form on a free \mathbb{Z} -module Λ . Prove that Λ has even rank and that there exists a \mathbb{Z} -basis \mathcal{B} of Λ for which the matrix of ω is of the form

$$\left(\begin{array}{cc} 0 & \Delta \\ -\Delta & 0 \end{array}\right),$$

where $\Delta = \text{diag}(d_1, \ldots, d_g)$ and the d_j are positive integers satisfying $d_j | d_{j+1}$. Show that those integers depend only on Λ and ω .

- **2.** $(Morphisms to \mathbb{P}^N)^1$ Let X be a complex manifold. Consider the line bundle $\mathcal{O}(1)$ on \mathbb{P}^N with sections x_0, \ldots, x_N . Show:
 - a) If $\phi : X \longrightarrow \mathbb{P}^N$ is a morphism of complex manifolds, then $\phi^*(\mathcal{O}(1))$ is a line bundle on X, generated by the global sections $\phi^*(x_0), \ldots, \phi^*(x_N)$.
 - **b)** Conversely, if \mathcal{L} is a line bundle on X and $s_0, \ldots, s_N \in \Gamma(X, \mathcal{L})$ are global sections generating \mathcal{L} , then there exists a unique morphism $\phi : X \longrightarrow \mathbb{P}^N$ of complex manifolds such that $\mathcal{L} \cong \phi^*(\mathcal{O}(1))$ and $s_j = \phi^*(x_j)$ for each $j = 0, \ldots, N$ under this isomorphism.
- **3.** (Finding equations)
 - a) Question: Let X be an abelian variety and \mathcal{L} a line bundle generated by its global sections, so that we have a morphism $\phi: X \longrightarrow \mathbb{P}^N$. Look at the projective variety $\phi(X)$. How can its polynomial equations be found in relation to theta functions?
 - **b)** Let $\Lambda \subseteq \mathbb{C}$ be a lattice, and consider the elliptic curve $E = \mathbb{C}/\Lambda$. Consider the Riemann theta functions with respect to Λ (see Exercise Sheet 3)

$$\vartheta \begin{bmatrix} a \\ b \end{bmatrix} (z) := \sum_{m \in \mathbb{Z}} e^{2\pi i \left(\frac{1}{2}\tau (m+a)^2 + (m+a)(z+b)\right)},$$

and for $j, k \in \{0, 1\}$ define

$$\vartheta_{jk} := \vartheta \left[\begin{array}{c} j/2\\ k/2 \end{array} \right]$$

¹For a more general treatment, see R. Hartshorne, *Algebraic Geometry*, II, Theorem 7.1.

Look at the map $E \longrightarrow \mathbb{P}^2$ sending $z \mapsto (\vartheta_{00}(z)\vartheta_{11}(z)^2, \vartheta_{10}(z)\vartheta_{01}(z)\vartheta_{11}(z), \vartheta_{00}(z)^3)$. One can prove that it induces an isomorphism from E onto the smooth cubic with homogeneous equation

$$Y^2 Z = X(\alpha X - \beta Z)(\beta Z + \alpha Z).$$

Look at O. Debarre, *Complex Tori and Abelian Varieties*, Proposition 2.12 and try to fill up the details of the proof. Explain what is happening.

4. Let $u: X \longrightarrow Y$ be a morphism of complex tori, and let L be a line bundle on Y. Show that the following diagram commutes:

