ETH Zürich	D-MATH	Differential Geometry II
Prof. Dr. Marc Burger	Stephan Tornier	April 5, 2016

Exercise Sheet 5

Exercise 1

Equip \mathbb{R}^n with the Riemannian metric associated to the standard scalar product, i.e. for all $x \in \mathbb{R}^n$ and $v, w \in T_x \mathbb{R}^n$ we set

$$g_x(v,w) = \langle v,w \rangle = \sum_{i=1}^n v_i w_i.$$

Show that the resulting Riemannian distance coincides with the Euclidean.

Exercise 2

Let $\Gamma \leq \text{Iso}(\mathbb{R}^n, \text{can})$ be a Bieberbach group consisting of pure translations. Show that there is a basis (a_1, \ldots, a_n) of \mathbb{R}^n such that

$$\Gamma = \{ T_a \mid a \in \mathbb{Z} \, a_1 + \dots + \mathbb{Z} \, a_n \}.$$

Exercise 3

Let Γ be the subgroup of $\operatorname{Iso}(\mathbb{R}^3, \operatorname{can})$ generated by $\gamma_1, \gamma_2 \in \operatorname{Iso}(\mathbb{R}^3, \operatorname{can})$ where

$$\gamma_1 \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -x \\ -y \\ z \end{pmatrix} + \begin{pmatrix} 1/2 \\ 1/2 \\ 1/2 \end{pmatrix}$$

and

$$\gamma_2 \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ -y \\ -z \end{pmatrix} + \begin{pmatrix} 1/2 \\ 0 \\ 0 \end{pmatrix}.$$

for all $(x, y, z)^T \in \mathbb{R}^3$. Show that Γ is Bieberbach group and that $\Gamma \setminus \mathbb{R}^3$ is orientable.