1.1. Young's Inequality. Let $1 \leq r, p, q<\infty$ such that

$$
1+\frac{1}{r}=\frac{1}{p}+\frac{1}{q} .
$$

Take $f \in L^{p}\left(\mathbb{R}^{n}\right)$ and $g \in L^{q}\left(\mathbb{R}^{n}\right)$. Define the convolution $f * g$ by

$$
(f * g)(x):=\int_{\mathbb{R}^{n}} f(y) g(x-y) \mathrm{d} y
$$

Prove that $f * g \in L^{r}\left(\mathbb{R}^{n}\right)$ and that

$$
\|f * g\|_{L^{r}} \leq\|f\|_{L^{p}}\|g\|_{L^{q}} .
$$

Deduce that $\left(L^{1}\left(\mathbb{R}^{n}\right), *\right)$ is a Banach algebra without unit.
Hint: Use the Hölder Inequality for three functions with $\frac{1}{r}+\frac{r-p}{r p}+\frac{r-q}{r q}=1$ for a point-wise estimate and integrate it.
1.2. Harmonic functions on a two dimensional domain. Let $\Omega \subset \mathbb{C}$ be an open, simply connected subset of \mathbb{C}.
(a) Let $f: \Omega \rightarrow \mathbb{C}$ be a holomorphic function. Prove that $u:=\operatorname{Re} f$ and $v:=\operatorname{Im} f$ are harmonic, i.e.

$$
\Delta v=\Delta u:=\frac{\partial^{2}}{\partial x^{2}} u+\frac{\partial^{2}}{\partial x^{2}} v=0
$$

(b) Let $u: \Omega \rightarrow \mathbb{R}$ be a C^{2} harmonic function. Prove that there is a function $v: \Omega \rightarrow \mathbb{R}$ such that $f=u+i v: \Omega \rightarrow \mathbb{C}$ is holomorphic.
(c) Prove that if $u: \Omega \rightarrow \mathbb{R}$ is a C^{2} harmonic function, then u is analytic.
(d) (Mean value property) Prove that if $u: \Omega \rightarrow \mathbb{R}$ is C^{2} harmonic, then

$$
u\left(z_{0}\right)=\int_{0}^{1} u\left(z_{0}+r e^{2 \pi i t}\right) \mathrm{d} t
$$

whenever $\bar{B}_{r}\left(z_{0}\right) \subset \Omega$.
(e) (Maximum principle) Prove that if $\Omega^{\prime} \subset \Omega$ is bounded, then for $u: \Omega \rightarrow \mathbb{R}$ C^{2} harmonic, we have

$$
\max _{\Omega^{\prime}} u=\max _{\partial \Omega^{\prime}} u
$$

Hint: Use theorems about holomorphic functions e.g. Cauchy's theorem. For (b), consider $G:=\partial_{x} u-i \partial_{y} u$ and define $v(z):=\operatorname{Im} \int_{\gamma} G$, where $z_{0} \in \Omega$ and $\gamma:[0,1] \rightarrow \Omega$ is a smooth path such that $\gamma(0)=z_{0}$ and $\gamma(1)=z$.

1.3. Symmetries of PDE

(a) Prove that for $O \in \mathrm{O}(n)$ and $u: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R} C^{2}$ harmonic, then

$$
v_{O}(x):=u(O x)
$$

is also harmonic where Ω is open and $x \in \Omega_{O}:=\left\{x \in \mathbb{R}^{n}: O x \in \Omega\right\}$.
(b) Prove that for $u: \Omega \subset \mathbb{R} \oplus \mathbb{R}^{n} \rightarrow \mathbb{R}$ a C^{2} solution of the heat equation i.e.

$$
\partial_{t} u-\Delta_{x} u=0
$$

where $(t, x) \in \mathbb{R} \oplus \mathbb{R}^{n}$ and Ω open,

$$
v_{\lambda, O}(t, x)=u\left(\lambda^{2} t, \lambda O x\right)
$$

is also a solution of the heat equation for $\lambda>0, O \in \mathrm{O}(n)$ and

$$
(t, x) \in \Omega_{\lambda, O}:=\left\{(t, x) \in \mathbb{R} \oplus \mathbb{R}^{n}:\left(\lambda^{2} t, \lambda O x\right) \in \Omega\right\}
$$

(c) ${ }^{1}$ Prove that for $u: \Omega \subset \mathbb{R} \oplus \mathbb{R}^{n} \rightarrow \mathbb{R}$ a C^{2} solution of the heat equation, then

$$
v_{\epsilon}(t, x):=\frac{1}{(\sqrt{1+4 \epsilon t})^{n}} \exp \left(\frac{-\epsilon\|x\|^{2}}{1+4 \epsilon t}\right) u\left(\frac{t}{1+4 \epsilon t}, \frac{x}{1+4 \epsilon t}\right)
$$

is also a solution of the heat equation for $\epsilon>0$ and

$$
(t, x) \in \Omega_{\epsilon}:=\left\{(t, x) \in \mathbb{R} \oplus \mathbb{R}^{n}: t>-(4 \epsilon)^{-1},\left(\frac{t}{1+4 \epsilon t}, \frac{x}{1+4 \epsilon t}\right) \in \Omega\right\}
$$

Use this symmetry starting from the constant solution to get a non-trivial solution v_{ϵ} of the heat equation. Analyse the behaviour of v_{ϵ} as $t \rightarrow-(4 \epsilon)^{-1}$.
1.4. Let $u: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a harmonic function and $f: \mathbb{R} \rightarrow \mathbb{R}$ a convex function ${ }^{2}$, then $f \circ u$ is subharmonic, i.e.

$$
\Delta(f \circ u) \geq 0
$$

Please hand in your solutions for this sheet by Monday 29/02/2016.

[^0]
[^0]: ${ }^{1}$ Thank you Yannick Krifka for pointing out a mistake in a previous version of this exercise.
 ${ }^{2}$ This means $f^{\prime \prime}(t) \geq 0$ for $t \in \mathbb{R}$.

