1.1. Young's Inequality. Let $1 \le r, p, q < \infty$ such that

$$1+\frac{1}{r}=\frac{1}{p}+\frac{1}{q}.$$

Take $f \in L^p(\mathbb{R}^n)$ and $g \in L^q(\mathbb{R}^n)$. Define the convolution f * g by

$$(f * g)(x) := \int_{\mathbb{R}^n} f(y)g(x - y) \mathrm{d}y.$$

Prove that $f * g \in L^r(\mathbb{R}^n)$ and that

 $\|f * g\|_{L^r} \le \|f\|_{L^p} \|g\|_{L^q}.$

Deduce that $(L^1(\mathbb{R}^n), *)$ is a Banach algebra without unit.

Hint: Use the Hölder Inequality for three functions with $\frac{1}{r} + \frac{r-p}{rp} + \frac{r-q}{rq} = 1$ for a point-wise estimate and integrate it.

1.2. Harmonic functions on a two dimensional domain. Let $\Omega \subset \mathbb{C}$ be an open, simply connected subset of \mathbb{C} .

(a) Let $f: \Omega \to \mathbb{C}$ be a holomorphic function. Prove that $u := \operatorname{Re} f$ and $v := \operatorname{Im} f$ are harmonic, i.e.

$$\Delta v = \Delta u := \frac{\partial^2}{\partial x^2} u + \frac{\partial^2}{\partial x^2} v = 0.$$

(b) Let $u : \Omega \to \mathbb{R}$ be a C^2 harmonic function. Prove that there is a function $v : \Omega \to \mathbb{R}$ such that $f = u + iv : \Omega \to \mathbb{C}$ is holomorphic.

(c) Prove that if $u: \Omega \to \mathbb{R}$ is a C^2 harmonic function, then u is analytic.

(d) (Mean value property) Prove that if $u: \Omega \to \mathbb{R}$ is C^2 harmonic, then

$$u(z_0) = \int_0^1 u(z_0 + re^{2\pi it}) dt$$

whenever $\bar{B}_r(z_0) \subset \Omega$.

(e) (Maximum principle) Prove that if $\Omega' \subset \Omega$ is bounded, then for $u : \Omega \to \mathbb{R}$ C^2 harmonic, we have

$$\max_{\Omega'} u = \max_{\partial \Omega'} u$$

26th February 2016

Hint: Use theorems about holomorphic functions e.g. Cauchy's theorem. For (b), consider $G := \partial_x u - i \partial_y u$ and define $v(z) := \text{Im } \int_{\gamma} G$, where $z_0 \in \Omega$ and $\gamma : [0, 1] \to \Omega$ is a smooth path such that $\gamma(0) = z_0$ and $\gamma(1) = z$.

1.3. Symmetries of PDE

(a) Prove that for $O \in O(n)$ and $u : \Omega \subset \mathbb{R}^n \to \mathbb{R}$ C^2 harmonic, then

 $v_O(x) := u(Ox)$

is also harmonic where Ω is open and $x \in \Omega_O := \{x \in \mathbb{R}^n : Ox \in \Omega\}.$

(b) Prove that for $u: \Omega \subset \mathbb{R} \oplus \mathbb{R}^n \to \mathbb{R}$ a C^2 solution of the heat equation i.e.

$$\partial_t u - \Delta_x u = 0$$

where $(t, x) \in \mathbb{R} \oplus \mathbb{R}^n$ and Ω open,

$$v_{\lambda,O}(t,x) = u(\lambda^2 t, \lambda O x)$$

is also a solution of the heat equation for $\lambda > 0, O \in O(n)$ and

$$(t,x) \in \Omega_{\lambda,O} := \{(t,x) \in \mathbb{R} \oplus \mathbb{R}^n : (\lambda^2 t, \lambda O x) \in \Omega\}.$$

(c) ¹ Prove that for $u: \Omega \subset \mathbb{R} \oplus \mathbb{R}^n \to \mathbb{R}$ a C^2 solution of the heat equation, then

$$v_{\epsilon}(t,x) := \frac{1}{\left(\sqrt{1+4\epsilon t}\right)^n} \exp\left(\frac{-\epsilon \|x\|^2}{1+4\epsilon t}\right) u\left(\frac{t}{1+4\epsilon t}, \frac{x}{1+4\epsilon t}\right)$$

is also a solution of the heat equation for $\epsilon > 0$ and

$$(t,x) \in \Omega_{\epsilon} := \{(t,x) \in \mathbb{R} \oplus \mathbb{R}^n : t > -(4\epsilon)^{-1}, (\frac{t}{1+4\epsilon t}, \frac{x}{1+4\epsilon t}) \in \Omega\}.$$

Use this symmetry starting from the constant solution to get a non-trivial solution v_{ϵ} of the heat equation. Analyse the behaviour of v_{ϵ} as $t \to -(4\epsilon)^{-1}$.

1.4. Let $u : \Omega \subset \mathbb{R}^n \to \mathbb{R}$ be a harmonic function and $f : \mathbb{R} \to \mathbb{R}$ a convex function², then $f \circ u$ is subharmonic, i.e.

$$\Delta(f \circ u) \ge 0$$

Please hand in your solutions for this sheet by Monday 29/02/2016.

¹Thank you Yannick Krifka for pointing out a mistake in a previous version of this exercise. ²This means $f''(t) \ge 0$ for $t \in \mathbb{R}$.