11.1. Formal adjoint

Let $\Omega \subset \mathbb{R}^n$ be a bounded open domain with smooth boundary and

$$Lu := \sum_{i,j=1}^{n} a_{ij} \partial_i \partial_j u + \sum_{i=1}^{n} b_i \partial_i u + cu$$

where $a_{ij} \in C^2(\overline{\Omega})$, $b_i \in C^1(\overline{\Omega})$ and $c \in C^0(\overline{\Omega})$ for i, j = 1, ..., n. The formal adjoint operator of L is defined by

$$L^*v := \sum_{i,j=1}^n \partial_i \partial_j (a_{ij}v) - \sum_{i=1}^n \partial_i (b_iv) + cv.$$

Prove that

$$\int_{\Omega} v(Lu) \, \mathrm{d}x = \int_{\Omega} (L^* v) u \, \mathrm{d}x$$

where $u \in W^{2,p}(\Omega) \cap W^{1,p}_0(\Omega)$, $v \in W^{2,q}(\Omega) \cap W^{1,p}_0(\Omega)$ and $\frac{1}{p} + \frac{1}{q} = 1$.

Hint: Use the divergence theorem and Lemma 3 saying that smooth functions vanishing on the boundary are dense in both spaces.

11.2. Actual adjoint Take the same assumptions on Ω, L, L^* as in 11.1. Let $1 < p, q < \infty$ with $\frac{1}{p} + \frac{1}{q} = 1$ and assume the ellipticity condition, i.e. that there is $\delta > 0$ with

$$\sum_{i,j=1}^{n} a_{ij}(x)\xi_i\xi_j \ge \delta \left|\xi\right|^2$$

where $\xi \in \mathbb{R}^n, x \in \overline{\Omega}$.

Now consider $L: W^{2,p}(\Omega) \cap W^{1,p}_0(\Omega) \subset L^p(\Omega) \to L^p(\Omega)$ as an unbounded linear operator with dense domain dom $(L) = W^{2,p}(\Omega) \cap W^{1,p}_0(\Omega)$ on the Banach space $X = L^p(\Omega)$.

(a) Prove that L has a closed graph in $X \times X$.

Hint: Elliptic regularity!

(b) Identify the dual space X^* with $L^q(\Omega)$. Prove that the formal adjoint operator $L^*: W^{2,q}(\Omega) \cap W^{1,q}_0(\Omega) \to L^q(\Omega)$ is the functional analytic dual operator¹ of L.

Hint: Elliptic regularity!

^{1}As in Definition 6.2.1. of the script of FA I.

ETH Zürich	Functional Analysis II	D-math
FS 2016	Exercise Sheet 11	Prof. D. A. Salamon

(c) Assume p = q = 2 and $b_i = \sum_{j=1}^n \partial_j a_{ij}$ for all i = 1, ..., n. Prove that L is a self-adjoint unbounded operator on $L^2(\Omega)$.

(d) Same assumptions as in (c) plus c = 0. Prove that the spectrum of L in (c) is contained in \mathbb{R}_{-} .

Hint: Use 6.3.12 (v) of FA I script.

Note that this gives for example $\lambda \geq 0$, that $\Delta - \lambda : W^{2,2}(\Omega) \cap W_0^{1,2}(\Omega) \to L^2(\Omega)$ is bijective, which solves the Dirichlet problem with zero on a smooth boundary for the 'Helmholtz equation' with p = 2.

11.3. Delta squared. Let $\Omega \subset \mathbb{R}^n$ be a bounded open domain with smooth boundary, 1 . Set

$$\Gamma := \{ u \in W^{4,p}(\Omega) \cap W^{1,p}_0(\Omega) : \Delta u \in W^{1,p}_0(\Omega) \}.$$

(a) Prove that $\Delta^2 = \Delta \circ \Delta : \Gamma \to L^p(\Omega)$ is bijective.

(b) Show that for every $u \in \Gamma$, $f \in L^p(\Omega)$, show that

$$\int_{\Omega} u\Delta^2 \varphi \, \mathrm{d}x = \int_{\Omega} f\varphi \, \mathrm{d}x \tag{1}$$

for every $\varphi \in C^{\infty}(\overline{\Omega})$ such that $\varphi|_{\partial\Omega} = 0$ and $\Delta \varphi|_{\partial\Omega} = 0$.

(c) For $u, f \in L^p(\Omega)$ satisfying (1) for every $\varphi \in C^{\infty}(\overline{\Omega})$ such that $\varphi|_{\partial\Omega} = 0$ and $\Delta \varphi|_{\partial\Omega} = 0$, prove that $u \in \Gamma$.

Hint: Try to squeeze u into the situation of higher regularity (Theorem 5).

Note: It can be observed while solving the exercise that Δ can be replaced by L in divergence form with coefficients $a_{ij} \in C^{2+1}(\overline{\Omega})$.

11.4. Maximum principle: easy case Let $\Omega \subset \mathbb{R}^n$ be a bounded, open domain and let $u \in C^2_{loc}(\Omega) \cap C(\overline{\Omega})$. Let L be an elliptic operator as in 11.2, with $a_{ij}, b_i, c \in C^0(\overline{\Omega})$ for $i, j = 1, \ldots, n$.

(a) Assume that c < 0 and $Lu \ge 0$ in Ω . Then prove that

 $\max_{\overline{\Omega}} u \le \max_{\partial \Omega} u^+$

where $u^+(x) := \max(0, u(x))$ is the positive part of u.

 $^{^2 \}mathrm{The}$ assumptions on the coefficients are actually too strong.

D-math	Functional Analysis II	ETH Zürich
Prof. D. A. Salamon	Exercise Sheet 11	FS 2016

(b) Find u with u < 0, $\Delta u \ge u$ and $\max_{\overline{\Omega}} u > \max_{\partial \Omega} u$. Deduce that u^+ cannot be replaced by u in (a).

Please hand in your solutions for this sheet by Tuesday 17/05/2016 to the pigeonhole of your teaching assistant in F28.