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12.1. Regularity on Rn. Let 1 < p <∞. Prove that for f ∈ Lp(Rn), u ∈ Lp(Rn)
with ∫

Rn
u∆ϕ =

∫
Rn
fϕ

for all ϕ ∈ C∞0 (Rn). Then u ∈ W 2,p(Rn) and ∆u = f .

Hint: Use Theorem 7 on local regularity with a cubes of radius 1
2 in a box of radius

1 and translate.

Solution: We directly obtain from (i) that u ∈ W k+2,p
loc (Rn) and ∆u = f . Now

define ‖x‖∞ := maxi=1,...,n |xi| and take K = B
‖·‖∞
1/2 (0) and Ω = B

‖·‖∞
1 (0) in (ii) to get

the estimate for C > 0

‖u‖W 2,p(K) ≤ C(‖∆u‖Lp(Ω) + ‖u‖Lp(Ω)). (1)

Now define τα for α ∈ Zn to be the translation by this vector. As all the norms in (1)
are translation invariant, we have that

‖u‖W 2,p(ταK) ≤ C(‖f‖Lp(ταΩ) + ‖u‖Lp(ταΩ))

for all α ∈ Zn. (Same constant C>0 !) Now the union of ταK for α ∈ Zn covers every
point outside of a set of measure zero exactly once and the union of ταK for α ∈ Zn
covers every point outside of a set of measure zero exactly 2n times. Here the set
of measure zero is the countable union of faces of the cubes ταK. Thus we get the
estimate

‖u‖W 2,p(Rn) =
∑
α∈Zn
‖u‖W 2,p(ταK)

≤ C
∑
α∈Zn

(‖f‖Lp(ταΩ) + ‖u‖Lp(ταΩ)) = 2nC(‖f‖Lp(Rn) + ‖u‖Lp(Rn)) <∞

So u ∈ W 2,p(Rn).

Note: This last estimate could have also been obtained by a combination of
Calderòn–Zygmund and Gagliardo-Nirenberg together with an approximation by
smooth functions with compact support.

12.2. The heat kernel. Let Kt(x) := 1
(4πt)n/2 e

−|x|2
4t for x ∈ Rn and t > 0.

(a) Prove that ∂tKt = ∆Kt, i.e. the kernel of the heat equation is a solution of the
heat equation.

(b) Prove that I :=
∫
Rn Kt dx = 1 for t > 0. Hint: Calculate I2 instead, use

spherical coordinates and use ω2n = 2πn
(n−1)! .

30th May 2016 1/7



ETH Zürich
FS 2016

Functional Analysis II
Exercise Sheet 12 - Solution

D-math
Charel Antony

(c) Prove that Kt+s = Kt ∗Ks for all s, t > 0. Hint: Go to the Fourier side.

(d) Prove that limt→0 ‖Kt ∗ u− u‖Lp(Rn) = 0 for all 1 ≤ p ≤ ∞ and for all u ∈ C0(Rn).
Hint: Start with p =∞.

(e) Conclude that for 1 ≤ p <∞, limt→0 ‖Kt ∗ u− u‖Lp(Rn) = 0 for all u ∈ Lp(Rn).
Hint: Use Banach-Steinhaus. (2.1.5)1

(f) Conclude that S(t) : Lp(Rn)→ Lp(Rn) for t ≥ 0 given by

S(t)u0 :=
{
Kt ∗ u0 for t > 0

u0 for t = 0

is a strongly continuous semigroup. (7.1.1) Prove that this is a contracting (7.2.9)
and self-adjoint (7.3.10, p = 2) strongly continuous semigroup.

(g) For u0 ∈ Lp(Rn) prove that u : (0,∞) × Rn → R : (t, x) 7→ (S(t)u0)(x) is a
smooth solution of the heat equation ∂tu = ∆u with limt→0 ‖u(t, ·)− u0‖Lp(Rn) = 0.

(h) Determine the infinitesimal generator (7.1.9) of S for 1 < p <∞. Hint: Use
Lemma 5.1.9 and Exercise 12.1 to determine the domain.

(i) Prove that the heat equation with initial values in W 2,p(Rn) is a well-posed
Cauchy problem. Hint: Use 7.2.2.

Solution:

(a) We simply compute for i = 1, . . . , n and t > 0,

∂tKt = Kt(−
n

2t + |x|
2

4t2 ),

∂iKt = −Kt
2xi
4t ,

∂2
iKt = Kt(−

2
4t −

x2
i

4t2 ).

Hence, summing over i, we get ∂tKt = ∆Kt for all t > 0.

(b) Fix t > 0. Call I = ∑
Rn Kt(x)dx. We will calculate I2 as follows

(4πt)nI2 =
∫

(Rn)2
e−
|x|2
4t e−

|y|2
4t dx dy

=
∫
R2n

e−
|z|2
4t dz

= ω2n

∫ ∞
0

e−
r2
4t r2n−1 dr

1All such references in this exercise sheet are to the FA I script.
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Define In :=
∫∞

0 e−
r2
4t r2n−1 dr. We can inductively calculate this integral from I1 = 2t.

Indeed, by integration by part, we get for n > 1

In = 2t(2n− 2)
∫ ∞

0
e−

r2
4t r

2n−3 dr = 2t(2n− 2)In−1 = . . .

= (2t)n−1
n−1∏
i=1

(2n− 2i)I1 = (2t)n2n−1(n− 1)!

Thus

I2 = 1
(4tπ)n (2t)n2n−1(n− 1)! ω2n = 1.

(c) We calculate the Fourier transform of Kt ∈ S(Rn). For t > 0, we get

F(Kt)(ξ) = 1
(4πt)n/2

∫
Rn
e−i〈x,ξ〉e−

|x|2
4t dx = 1

(4πt)n/2
∫
Rn
e−t|ξ|

2
e
−
∣∣∣t1/2iξ+ x

2
√
t

∣∣∣2 dx

= e−t|ξ|
2
∫
Rn
Kt(x) dx = e−t|ξ|

2

where the third equality comes from invariance under translation of the Lebesgue
measure and the last by the calculations in (b). Thus we get for s, t > 0 that

F(Ks+t) = F(Ks)F(Kt).

Therefore, we get under Fourier inverse

Ks+t = Ks ∗Kt

for all s, t > 0.

(d) Take u ∈ C0(Rn). Fix ε > 0. Then by absolute continuity, there is δ > 0 such
that |u(x− y)− u(x)| ≤ ε

2 for x ∈ Rn and y ∈ Bδ(0). Thus we get for x ∈ Rn, that

Kt ∗ u(x)− u(x) =
∫
Rn
Kt(y)(u(x− y)− u(x)) dy

=
∫
Bδ(0)

Kt(y)(u(x− y)− u(x)) dy +
∫
Rn\Bδ(0)

Kt(y)(u(x− y)− u(x)) dy

= I1 + I2

Now, by choice of δ > 0 and
∫
Rn Kt dx = 1, we have |I1| ≤ ε

2 . Now for I2, we notice
that ∫

Rn\Bδ(0)
Kt(y) dy =

∫
Rn\Br(0)

K1(y) dy
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where r = δ√
t
. As

∫
Rn K1 dx = 1, we have that there is R > 0 such that if r > R, then

2 ‖u‖L∞(Rn)

∫
Rn\Br(0)

K1(y) dy < ε

2

and so by definition, for 0 < t < δ2

R2 , we get |I2| < ε
2 . This proves that

lim
t→0
‖Kt ∗ u− u‖L∞(Rn) = 0.

Now let R > 0 such that suppu ⊂ BR(0), then we have

lim
t→0
‖Kt ∗ u− u‖Lp(Rn)

= lim
t→0
‖Kt ∗ u− u‖Lp(BR(0)) + lim

t→0
‖Kt ∗ u− u‖Lp(Rn\BR(0))

≤ µ(supp f)
1
p lim
t→0
‖Kt ∗ u− u‖L∞(Rn) + lim

t→0
‖Kt‖L1(Rn\BR(0) ‖u‖Lp(Rn) = 0

where we used Hölder’s inequality and Young’s inequality.

(e) As Cc(Rn) is dense in every Lp(Rn) for 1 ≤ p ≤ ∞ and as for t > 0

‖S(t)u‖Lp ≤ ‖Kt‖L1 ‖u‖Lp

by Young’s inequality, we have that

‖S(t)‖ ≤ 1, (2)

we can apply Banach-Steinhaus to conclude that S(t) converges strongly to the
identity on Lp(Rn).

(f) By the previous paragraph, S is strongly continuous. That it is a semi-group
follows immediately from (c). That it is a contraction group follows by definition
from (2). That for p = 2, S(t) is self-adjoint, follows from Kt(x) = Kt(−x) for all
t > 0 and x ∈ Rn, because then

〈S(t)u, v〉L2 =
∫

(Rn)2
u(x)Kt(x− y)v(y) = 〈u, S(t)v〉L2 .

(g) That u is smooth follows from Kt being smooth. Also from (a), we get that u is
solution of the heat equation and the last statement comes from the strong continuity
of S.

(h) An educated guess would be that A : dom(A) → Lp(Rn), the infinitesimal
generator of S, is equal to ∆ : W 2,p(Rn)→ Lp(Rn).
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We start by showing thatW 2,p(Rn) ⊂ dom(A). So fix u ∈ W 2,p(Rn), T > 0 and by the
same argument as in Analysis I, the function x : [0, T ]→ Lp(Rn) : t→

∫ t
0(Ks ∗∆u) ds

is continuously differentiable and its derivative ẋ is equal ẋ(t) = Kt∗∆u. In particular,
ẋ(0) = ∆u by strong continuity. Let v ∈ Lq(Rn) = (Lp(Rn))∗ with 1

p
+ 1

q
= 1, and so〈

v,
∫ t

0
Ks ∗∆u ds

〉
:=
∫ t

0
〈v,Ks ∗∆u〉 ds = lim

δ→0+

∫ t

δ
〈v,Ks ∗∆u〉 ds

where the last inequality follows by dominated convergence. But now we have for
δ ≤ s ≤ t and x ∈ Rn, that

Ks ∗∆u(x) = ∆Ks ∗ u(x) = (∂sKs) ∗ u(x) = ∂s(Ks ∗ u(x))

where we used (a) and usual differentiation rules for convolution products. Here we
commit a minor notational abuse in noting the derivative γ̇(s) of the path γ : [δ, t]→
R : s→ 〈v,Ks ∗ u〉 by ∂s 〈v,Ks ∗ u〉. Thus, we pursue〈

v,
∫ t

0
Ks ∗∆u ds

〉
= lim

δ→0+

∫ t

δ
∂s 〈v,Ks ∗ u〉 ds

= lim
δ→0+

〈v,Kt ∗ u−Kδ ∗ u〉 = 〈v,Kt ∗ u− u〉

where we use 5.1.9. in the second equality and Hölder inequality together with strong
continuity in the last equality. As v ∈ Lq(Rn) was arbitrary, we have established by
Hahn-Banach, that∫ t

0
Ks ∗∆u ds = Kt ∗ u− u

which immediately tells us by combining all the above that u ∈ dom(A) and Au = ∆u.

Now we still have to prove that dom(A) ⊂ W 2,p(Rn). So let u ∈ dom(A) ⊂ Lp(Rn).
Then fix ϕ ∈ C∞0 (Rn), so in particular ϕ ∈ W 2,q(Rn). So by what we just established,
we have limh→0+

Kh∗ϕ−ϕ
h

= ∆ϕ where the limit is take in Lq(Rn). Therefore, by Hölder
and dominated convergence, we have

〈ϕ,Au〉 := lim
h→0+

〈
ϕ,
Kh ∗ u− u

h

〉
= lim

h→0+

〈
Kh ∗ ϕ− ϕ

h
, u
〉

= 〈∆ϕ, u〉

where all the pairings are the usual Lp − Lq one and the second equality also used
the symmetry Kh(x) = Kh(−x). Therefore, we get that u is a weak solution with
f = Au ∈ Lp(Rn). Therefore, by 12.1, we have that u ∈ W 2,p(Rn). This ends the
proof of A = ∆.

(i) We know that W 2,p(Rn) is dense in Lp(Rn) and ∆ : W 2,p(Rn)→ Lp(Rn) is closed
by the usual argument of elliptic regularity used in 11.2. (a). So we can apply Phillips
theorem, and conclude that it is a well-posed problem.
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12.3. The heat equation on a bounded domains. Let Ω ⊂ Rn be an open,
bounded domain with smooth boundary. Take L to be a divergence form elliptic
operator i.e. Lu = ∑n

i,j=1 ∂i(aij∂ju) with aij = aji ∈ C∞(Ω) and there is δ > 0 with∑n
i,j=1 aij(x)ξiξj ≥ δ |ξ|2 for all ξ ∈ Rn and x ∈ Rn.

(a) Prove that L : W 2,2(Ω)∩W 1,2
0 (Ω) ⊂ L2(Ω)→ L2(Ω) is the infinitesimal generator

of a contraction strongly continuous semigroup S which is also self-adjoint.

Hint: Use Lumer–Phillips Theorem (7.2.11) and the theorem on self-adjoint semi-
groups (7.3.10) together with exercise 11.2. (c).

(b) S cannot be extended into a strongly continuous group.

Hint: Use the theorem on strongly continuous groups (7.2.4) and the corollary to
Hille–Yoshida (7.2.8) together with the fact that L is bijective and L−1 : L2(Rn)→
L2(Rn) is compact together with the spectral theory for compact operators (5.2.7)
and self-adjoint operators (5.3.16).

(c) Prove that for u0 ∈ L2(Rn), S(t)u0 is smooth and vanishes on the boundary for
every t > 0.

Hint: Use the theorem on strongly continuous analytic semigroups 7.4.2 and example
7.4.5 on analyticity of self-adjoint strongly continuous semigroups.

Solution:

(a) For u ∈ W 2,2(Ω) ∩W 1,2
0 (Ω), we have that

〈u, Lu〉 = −
∫

Ω
∂iu aij ∂ju = −B(u, u) ≤ 0.

and due to Exercise 11.2. (d), we know that for all λ > 0, we have L− λ1 is bijective,
so in particular has a dense image. Therefore, we have by 7.2.11 (iv) =⇒ (i),
that A is the infinitesimal generator of a contraction strongly continuous semigroup
S(t) : L2(Ω)→ L2(Ω) for ≥ 0. Furthermore, L is self-adjoint by 11.2 (c) with

sup
06=u∈W 2,2(Ω)∩W 1,2

0 (Ω)

〈u, Lu〉
‖u‖L2(Rn)

≤ 0 <∞,

so that S is also self-adjoint by Theorem 7.3.10.

(b) S can be extended into a strongly continuous groups by 7.2.4 exactly if −L is
also the infinitesimal generator of a strongly continuous semigroup. The fact of being
the infinitesimal generator of a strongly continuous semigroup is characterised by
Hille–Yoshida (7.2.8). One necessary condition in (ii) is that the spectrum σ(−L)
is bounded from above. However, L−1 : L2(Rn)→ W 2,2(Ω) ∩W 1,2

0 (Ω) ↪→ L2(Rn) is
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compact as the last inclusion in compact by Rellich–Kondrachov and the first operator
is bounded. Furthermore, as L is self-adjoint, L−1 is self-adjoint as well. By 5.2.16.
(v), there is an orthonormal basis of eigenvectors for L2(Rn). Furthermore, λ = 0
is not an eigenvalue, as L is surjective and so by 5.2.7, there are countably many
eigenvalues λi (every Eλi has finite dimension whereas L2(Rn) is infinite dimensional.)
and the eigenvalues have to accumulate at zero. Due to this, 1

λi
are eigenvalues of

L. This means that all λi are negative and so the point spectrum of L is unbounded
below, meaning that the spectrum of −L is unbounded from above. Due to our
previous observation, this implies that −L is not the infinitesimal generator of a
strongly continuous semigroups, and so S cannot be extended to a strongly continuous
group.

(c) By 7.4.5, S is an analytical semigroup as every self-adjoint strongly continuous
semigroup is. Therefore, imS(t) ⊂ dom(A) for all t > 0, furthermore we even have
imS(t) ⊂ dom(A∞). This is the set defined in 7.1.14. as dom(A∞) = ⋂∞

n=1 dom(An)
with dom(An) := {x ∈ dom(A) : Ax ∈ dom(An−1)}.

In our situation, we already established in 11.3 for L = ∆, that dom(∆2) = Γ. So in
a similar fashion, inductively, we get by elliptic regularity that

dom(Ln) = {u ∈ W 2n,2(Ω) ∩W 1,2
0 (Ω) : Liu ∈ W 1,2

0 (Ω) for i = 1, . . . , n− 1}.

So

dom(L∞) ⊂ (
n⋂
n=1

W 2n,2(Ω)) ∩W 1,2
0 (Ω) ⊂ {u ∈ C∞(Ω) : u|∂Ω = 0},

so all the solutions x : [0,∞) → L2(Rn) : t 7→ S(t)u0 is mapping into C∞(Ω) and
vanishes on the boundary for t > 0 and u0 ∈ L2(Rn).
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