12.1. Regularity on \mathbb{R}^n . Let $1 . Prove that for <math>f \in L^p(\mathbb{R}^n)$, $u \in L^p(\mathbb{R}^n)$ with

$$\int_{\mathbb{R}^n} u \Delta \varphi = \int_{\mathbb{R}^n} f \varphi$$

for all $\varphi \in C_0^{\infty}(\mathbb{R}^n)$. Then $u \in W^{2,p}(\mathbb{R}^n)$ and $\Delta u = f$.

Hint: Use Theorem 7 on local regularity with a cubes of radius $\frac{1}{2}$ in a box of radius 1 and translate.

Solution: We directly obtain from (i) that $u \in W_{loc}^{k+2,p}(\mathbb{R}^n)$ and $\Delta u = f$. Now define $||x||_{\infty} := \max_{i=1,\dots,n} |x_i|$ and take $K = \overline{B}_{1/2}^{\|\cdot\|_{\infty}}(0)$ and $\Omega = B_1^{\|\cdot\|_{\infty}}(0)$ in (ii) to get the estimate for C > 0

$$\|u\|_{W^{2,p}(K)} \le C(\|\Delta u\|_{L^{p}(\Omega)} + \|u\|_{L^{p}(\Omega)}).$$
(1)

Now define τ_{α} for $\alpha \in \mathbb{Z}^n$ to be the translation by this vector. As all the norms in (1) are translation invariant, we have that

$$||u||_{W^{2,p}(\tau_{\alpha}K)} \le C(||f||_{L^{p}(\tau_{\alpha}\Omega)} + ||u||_{L^{p}(\tau_{\alpha}\Omega)})$$

for all $\alpha \in \mathbb{Z}^n$. (Same constant C>0 !) Now the union of $\tau_{\alpha} K$ for $\alpha \in \mathbb{Z}^n$ covers every point outside of a set of measure zero exactly once and the union of $\tau_{\alpha} K$ for $\alpha \in \mathbb{Z}^n$ covers every point outside of a set of measure zero exactly 2^n times. Here the set of measure zero is the countable union of faces of the cubes $\tau_{\alpha} K$. Thus we get the estimate

$$\begin{aligned} \|u\|_{W^{2,p}(\mathbb{R}^{n})} &= \sum_{\alpha \in \mathbb{Z}^{n}} \|u\|_{W^{2,p}(\tau_{\alpha}K)} \\ &\leq C \sum_{\alpha \in \mathbb{Z}^{n}} (\|f\|_{L^{p}(\tau_{\alpha}\Omega)} + \|u\|_{L^{p}(\tau_{\alpha}\Omega)}) = 2^{n}C(\|f\|_{L^{p}(\mathbb{R}^{n})} + \|u\|_{L^{p}(\mathbb{R}^{n})}) < \infty \end{aligned}$$

So $u \in W^{2,p}(\mathbb{R}^n)$.

Note: This last estimate could have also been obtained by a combination of Calderòn–Zygmund and Gagliardo-Nirenberg together with an approximation by smooth functions with compact support.

12.2. The heat kernel. Let $K_t(x) := \frac{1}{(4\pi t)^{n/2}} e^{\frac{-|x|^2}{4t}}$ for $x \in \mathbb{R}^n$ and t > 0.

(a) Prove that $\partial_t K_t = \Delta K_t$, i.e. the kernel of the heat equation is a solution of the heat equation.

(b) Prove that $I := \int_{\mathbb{R}^n} K_t \, dx = 1$ for t > 0. Hint: Calculate I^2 instead, use spherical coordinates and use $\omega_{2n} = \frac{2\pi^n}{(n-1)!}$.

30th May 2016

1/7

(c) Prove that $K_{t+s} = K_t * K_s$ for all s, t > 0. Hint: Go to the Fourier side.

(d) Prove that $\lim_{t\to 0} ||K_t * u - u||_{L^p(\mathbb{R}^n)} = 0$ for all $1 \le p \le \infty$ and for all $u \in C_0(\mathbb{R}^n)$. **Hint:** Start with $p = \infty$.

(e) Conclude that for $1 \le p < \infty$, $\lim_{t\to 0} ||K_t * u - u||_{L^p(\mathbb{R}^n)} = 0$ for all $u \in L^p(\mathbb{R}^n)$. **Hint:** Use Banach-Steinhaus. $(2.1.5)^1$

(f) Conclude that $S(t): L^p(\mathbb{R}^n) \to L^p(\mathbb{R}^n)$ for $t \ge 0$ given by

$$S(t)u_0 := \begin{cases} K_t * u_0 \text{ for } t > 0\\ u_0 \text{ for } t = 0 \end{cases}$$

is a strongly continuous semigroup. (7.1.1) Prove that this is a contracting (7.2.9)and self-adjoint (7.3.10, p = 2) strongly continuous semigroup.

(g) For $u_0 \in L^p(\mathbb{R}^n)$ prove that $u: (0,\infty) \times \mathbb{R}^n \to \mathbb{R}: (t,x) \mapsto (S(t)u_0)(x)$ is a smooth solution of the heat equation $\partial_t u = \Delta u$ with $\lim_{t\to 0} \|u(t,\cdot) - u_0\|_{L^p(\mathbb{R}^n)} = 0.$

(h) Determine the infinitesimal generator (7.1.9) of S for 1 . Hint: UseLemma 5.1.9 and Exercise 12.1 to determine the domain.

(i) Prove that the heat equation with initial values in $W^{2,p}(\mathbb{R}^n)$ is a well-posed Cauchy problem. **Hint:** Use 7.2.2.

Solution:

(a) We simply compute for i = 1, ..., n and t > 0,

$$\partial_t K_t = K_t \left(-\frac{n}{2t} + \frac{|x|^2}{4t^2} \right), \\ \partial_i K_t = -K_t \frac{2x_i}{4t}, \\ \partial_i^2 K_t = K_t \left(-\frac{2}{4t} - \frac{x_i^2}{4t^2} \right).$$

Hence, summing over *i*, we get $\partial_t K_t = \Delta K_t$ for all t > 0.

(b) Fix t > 0. Call $I = \sum_{\mathbb{R}^n} K_t(x) dx$. We will calculate I^2 as follows

$$(4\pi t)^n I^2 = \int_{(\mathbb{R}^n)^2} e^{-\frac{|x|^2}{4t}} e^{-\frac{|y|^2}{4t}} \, \mathrm{d}x \, \mathrm{d}y$$
$$= \int_{\mathbb{R}^{2n}} e^{-\frac{|z|^2}{4t}} \, \mathrm{d}z$$
$$= \omega_{2n} \int_0^\infty e^{-\frac{r^2}{4t}} r^{2n-1} \, \mathrm{d}r$$

¹All such references in this exercise sheet are to the FA I script.

Define $I_n := \int_0^\infty e^{-\frac{r^2}{4t}} r^{2n-1} dr$. We can inductively calculate this integral from $I_1 = 2t$. Indeed, by integration by part, we get for n > 1

$$I_n = 2t(2n-2) \int_0^\infty e^{-\frac{r^2}{4t}r^{2n-3}} dr = 2t(2n-2)I_{n-1} = \dots$$
$$= (2t)^{n-1} \prod_{i=1}^{n-1} (2n-2i)I_1 = (2t)^n 2^{n-1}(n-1)!$$

Thus

$$I^{2} = \frac{1}{(4t\pi)^{n}} (2t)^{n} 2^{n-1} (n-1)! \ \omega_{2n} = 1.$$

(c) We calculate the Fourier transform of $K_t \in \mathcal{S}(\mathbb{R}^n)$. For t > 0, we get

$$\mathcal{F}(K_t)(\xi) = \frac{1}{(4\pi t)^{n/2}} \int_{\mathbb{R}^n} e^{-i\langle x,\xi\rangle} e^{-\frac{|x|^2}{4t}} \, \mathrm{d}x = \frac{1}{(4\pi t)^{n/2}} \int_{\mathbb{R}^n} e^{-t|\xi|^2} e^{-\left|t^{1/2}i\xi + \frac{x}{2\sqrt{t}}\right|^2} \, \mathrm{d}x$$
$$= e^{-t|\xi|^2} \int_{\mathbb{R}^n} K_t(x) \, \mathrm{d}x = e^{-t|\xi|^2}$$

where the third equality comes from invariance under translation of the Lebesgue measure and the last by the calculations in (b). Thus we get for s, t > 0 that

 $\mathcal{F}(K_{s+t}) = \mathcal{F}(K_s)\mathcal{F}(K_t).$

Therefore, we get under Fourier inverse

$$K_{s+t} = K_s * K_t$$

for all s, t > 0.

(d) Take $u \in C_0(\mathbb{R}^n)$. Fix $\epsilon > 0$. Then by absolute continuity, there is $\delta > 0$ such that $|u(x-y) - u(x)| \leq \frac{\epsilon}{2}$ for $x \in \mathbb{R}^n$ and $y \in B_{\delta}(0)$. Thus we get for $x \in \mathbb{R}^n$, that

$$K_t * u(x) - u(x) = \int_{\mathbb{R}^n} K_t(y)(u(x-y) - u(x)) \, dy$$

= $\int_{B_{\delta}(0)} K_t(y)(u(x-y) - u(x)) \, dy + \int_{\mathbb{R}^n \setminus B_{\delta}(0)} K_t(y)(u(x-y) - u(x)) \, dy$
= $I_1 + I_2$

Now, by choice of $\delta > 0$ and $\int_{\mathbb{R}^n} K_t \, dx = 1$, we have $|I_1| \leq \frac{\epsilon}{2}$. Now for I_2 , we notice that

$$\int_{\mathbb{R}^n \setminus B_{\delta}(0)} K_t(y) \, \mathrm{d}y = \int_{\mathbb{R}^n \setminus B_r(0)} K_1(y) \, \mathrm{d}y$$

30th May 2016

3/7

where $r = \frac{\delta}{\sqrt{t}}$. As $\int_{\mathbb{R}^n} K_1 \, \mathrm{d}x = 1$, we have that there is R > 0 such that if r > R, then

$$2 \|u\|_{L^{\infty}(\mathbb{R}^n)} \int_{\mathbb{R}^n \setminus B_r(0)} K_1(y) \, \mathrm{d}y < \frac{\epsilon}{2}$$

and so by definition, for $0 < t < \frac{\delta^2}{R^2}$, we get $|I_2| < \frac{\epsilon}{2}$. This proves that

$$\lim_{t \to 0} \|K_t * u - u\|_{L^{\infty}(\mathbb{R}^n)} = 0.$$

Now let R > 0 such that supp $u \subset B_R(0)$, then we have

$$\begin{split} &\lim_{t \to 0} \|K_t * u - u\|_{L^p(\mathbb{R}^n)} \\ &= \lim_{t \to 0} \|K_t * u - u\|_{L^p(B_R(0))} + \lim_{t \to 0} \|K_t * u - u\|_{L^p(\mathbb{R}^n \setminus B_R(0))} \\ &\leq \mu(\operatorname{supp} f)^{\frac{1}{p}} \lim_{t \to 0} \|K_t * u - u\|_{L^{\infty}(\mathbb{R}^n)} + \lim_{t \to 0} \|K_t\|_{L^1(\mathbb{R}^n \setminus B_R(0))} \|u\|_{L^p(\mathbb{R}^n)} = 0 \end{split}$$

where we used Hölder's inequality and Young's inequality.

(e) As $C_c(\mathbb{R}^n)$ is dense in every $L^p(\mathbb{R}^n)$ for $1 \le p \le \infty$ and as for t > 0

$$||S(t)u||_{L^p} \le ||K_t||_{L^1} ||u||_{L^p}$$

by Young's inequality, we have that

$$\|S(t)\| \le 1,\tag{2}$$

we can apply Banach-Steinhaus to conclude that S(t) converges strongly to the identity on $L^p(\mathbb{R}^n)$.

(f) By the previous paragraph, S is strongly continuous. That it is a semi-group follows immediately from (c). That it is a contraction group follows by definition from (2). That for p = 2, S(t) is self-adjoint, follows from $K_t(x) = K_t(-x)$ for all t > 0 and $x \in \mathbb{R}^n$, because then

$$\langle S(t)u,v\rangle_{L^2} = \int_{(\mathbb{R}^n)^2} u(x)K_t(x-y)v(y) = \langle u,S(t)v\rangle_{L^2}.$$

(g) That u is smooth follows from K_t being smooth. Also from (a), we get that u is solution of the heat equation and the last statement comes from the strong continuity of S.

(h) An educated guess would be that $A : \operatorname{dom}(A) \to L^p(\mathbb{R}^n)$, the infinitesimal generator of S, is equal to $\Delta : W^{2,p}(\mathbb{R}^n) \to L^p(\mathbb{R}^n)$.

D-MATH	Functional Analysis II	ETH Zürich
Charel Antony	Exercise Sheet 12 - Solution	FS 2016

We start by showing that $W^{2,p}(\mathbb{R}^n) \subset \operatorname{dom}(A)$. So fix $u \in W^{2,p}(\mathbb{R}^n)$, T > 0 and by the same argument as in Analysis I, the function $x : [0,T] \to L^p(\mathbb{R}^n) : t \to \int_0^t (K_s * \Delta u) \, \mathrm{d}s$ is continuously differentiable and its derivative \dot{x} is equal $\dot{x}(t) = K_t * \Delta u$. In particular, $\dot{x}(0) = \Delta u$ by strong continuity. Let $v \in L^q(\mathbb{R}^n) = (L^p(\mathbb{R}^n))^*$ with $\frac{1}{p} + \frac{1}{q} = 1$, and so

$$\left\langle v, \int_0^t K_s * \Delta u \, \mathrm{d}s \right\rangle := \int_0^t \left\langle v, K_s * \Delta u \right\rangle \mathrm{d}s = \lim_{\delta \to 0^+} \int_{\delta}^t \left\langle v, K_s * \Delta u \right\rangle \mathrm{d}s$$

where the last inequality follows by dominated convergence. But now we have for $\delta \leq s \leq t$ and $x \in \mathbb{R}^n$, that

$$K_s * \Delta u(x) = \Delta K_s * u(x) = (\partial_s K_s) * u(x) = \partial_s (K_s * u(x))$$

where we used (a) and usual differentiation rules for convolution products. Here we commit a minor notational abuse in noting the derivative $\dot{\gamma}(s)$ of the path $\gamma : [\delta, t] \to \mathbb{R} : s \to \langle v, K_s * u \rangle$ by $\partial_s \langle v, K_s * u \rangle$. Thus, we pursue

$$\left\langle v, \int_0^t K_s * \Delta u \, \mathrm{d}s \right\rangle = \lim_{\delta \to 0^+} \int_{\delta}^t \partial_s \left\langle v, K_s * u \right\rangle \mathrm{d}s$$
$$= \lim_{\delta \to 0^+} \left\langle v, K_t * u - K_\delta * u \right\rangle = \left\langle v, K_t * u - u \right\rangle$$

where we use 5.1.9. in the second equality and Hölder inequality together with strong continuity in the last equality. As $v \in L^q(\mathbb{R}^n)$ was arbitrary, we have established by Hahn-Banach, that

$$\int_0^t K_s * \Delta u \, \mathrm{d}s = K_t * u - u$$

which immediately tells us by combining all the above that $u \in \text{dom}(A)$ and $Au = \Delta u$.

Now we still have to prove that $\operatorname{dom}(A) \subset W^{2,p}(\mathbb{R}^n)$. So let $u \in \operatorname{dom}(A) \subset L^p(\mathbb{R}^n)$. Then fix $\varphi \in C_0^{\infty}(\mathbb{R}^n)$, so in particular $\varphi \in W^{2,q}(\mathbb{R}^n)$. So by what we just established, we have $\lim_{h\to 0^+} \frac{K_h * \varphi - \varphi}{h} = \Delta \varphi$ where the limit is take in $L^q(\mathbb{R}^n)$. Therefore, by Hölder and dominated convergence, we have

$$\langle \varphi, Au \rangle := \lim_{h \to 0^+} \left\langle \varphi, \frac{K_h * u - u}{h} \right\rangle = \lim_{h \to 0^+} \left\langle \frac{K_h * \varphi - \varphi}{h}, u \right\rangle = \left\langle \Delta \varphi, u \right\rangle$$

where all the pairings are the usual $L^p - L^q$ one and the second equality also used the symmetry $K_h(x) = K_h(-x)$. Therefore, we get that u is a weak solution with $f = Au \in L^p(\mathbb{R}^n)$. Therefore, by 12.1, we have that $u \in W^{2,p}(\mathbb{R}^n)$. This ends the proof of $A = \Delta$.

(i) We know that $W^{2,p}(\mathbb{R}^n)$ is dense in $L^p(\mathbb{R}^n)$ and $\Delta : W^{2,p}(\mathbb{R}^n) \to L^p(\mathbb{R}^n)$ is closed by the usual argument of elliptic regularity used in 11.2. (a). So we can apply Phillips theorem, and conclude that it is a well-posed problem.

30th May 2016

12.3. The heat equation on a bounded domains. Let $\Omega \subset \mathbb{R}^n$ be an open, bounded domain with smooth boundary. Take L to be a divergence form elliptic operator i.e. $Lu = \sum_{i,j=1}^{n} \partial_i (a_{ij}\partial_j u)$ with $a_{ij} = a_{ji} \in C^{\infty}(\overline{\Omega})$ and there is $\delta > 0$ with $\sum_{i,j=1}^{n} a_{ij}(x)\xi_i\xi_j \geq \delta |\xi|^2$ for all $\xi \in \mathbb{R}^n$ and $x \in \mathbb{R}^n$.

(a) Prove that $L: W^{2,2}(\Omega) \cap W^{1,2}_0(\Omega) \subset L^2(\Omega) \to L^2(\Omega)$ is the infinitesimal generator of a contraction strongly continuous semigroup S which is also self-adjoint.

Hint: Use Lumer–Phillips Theorem (7.2.11) and the theorem on self-adjoint semigroups (7.3.10) together with exercise 11.2. (c).

(b) S cannot be extended into a strongly continuous group.

Hint: Use the theorem on strongly continuous groups (7.2.4) and the corollary to Hille–Yoshida (7.2.8) together with the fact that L is bijective and $L^{-1}: L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n)$ is compact together with the spectral theory for compact operators (5.2.7) and self-adjoint operators (5.3.16).

(c) Prove that for $u_0 \in L^2(\mathbb{R}^n)$, $S(t)u_0$ is smooth and vanishes on the boundary for every t > 0.

Hint: Use the theorem on strongly continuous analytic semigroups 7.4.2 and example 7.4.5 on analyticity of self-adjoint strongly continuous semigroups.

Solution:

(a) For $u \in W^{2,2}(\Omega) \cap W^{1,2}_0(\Omega)$, we have that

$$\langle u, Lu \rangle = -\int_{\Omega} \partial_i u \ a_{ij} \ \partial_j u = -B(u, u) \le 0.$$

and due to Exercise 11.2. (d), we know that for all $\lambda > 0$, we have $L - \lambda \mathbb{1}$ is bijective, so in particular has a dense image. Therefore, we have by 7.2.11 (*iv*) \implies (*i*), that A is the infinitesimal generator of a contraction strongly continuous semigroup $S(t): L^2(\Omega) \to L^2(\Omega)$ for ≥ 0 . Furthermore, L is self-adjoint by 11.2 (c) with

$$\sup_{0 \neq u \in W^{2,2}(\Omega) \cap W_0^{1,2}(\Omega)} \frac{\langle u, Lu \rangle}{\|u\|_{L^2(\mathbb{R}^n)}} \le 0 < \infty$$

so that S is also self-adjoint by Theorem 7.3.10.

(b) S can be extended into a strongly continuous groups by 7.2.4 exactly if -L is also the infinitesimal generator of a strongly continuous semigroup. The fact of being the infinitesimal generator of a strongly continuous semigroup is characterised by Hille–Yoshida (7.2.8). One necessary condition in (*ii*) is that the spectrum $\sigma(-L)$ is bounded from above. However, $L^{-1}: L^2(\mathbb{R}^n) \to W^{2,2}(\Omega) \cap W_0^{1,2}(\Omega) \hookrightarrow L^2(\mathbb{R}^n)$ is

D-MATH	Functional Analysis II	ETH Zürich
Charel Antony	Exercise Sheet 12 - Solution	FS 2016

compact as the last inclusion in compact by Rellich–Kondrachov and the first operator is bounded. Furthermore, as L is self-adjoint, L^{-1} is self-adjoint as well. By 5.2.16. (v), there is an orthonormal basis of eigenvectors for $L^2(\mathbb{R}^n)$. Furthermore, $\lambda = 0$ is not an eigenvalue, as L is surjective and so by 5.2.7, there are countably many eigenvalues λ_i (every E_{λ_i} has finite dimension whereas $L^2(\mathbb{R}^n)$ is infinite dimensional.) and the eigenvalues have to accumulate at zero. Due to this, $\frac{1}{\lambda_i}$ are eigenvalues of L. This means that all λ_i are negative and so the point spectrum of L is unbounded below, meaning that the spectrum of -L is unbounded from above. Due to our previous observation, this implies that -L is not the infinitesimal generator of a strongly continuous semigroups, and so S cannot be extended to a strongly continuous group.

(c) By 7.4.5, S is an analytical semigroup as every self-adjoint strongly continuous semigroup is. Therefore, im $S(t) \subset \operatorname{dom}(A)$ for all t > 0, furthermore we even have im $S(t) \subset \operatorname{dom}(A^{\infty})$. This is the set defined in 7.1.14. as $\operatorname{dom}(A^{\infty}) = \bigcap_{n=1}^{\infty} \operatorname{dom}(A^n)$ with $\operatorname{dom}(A^n) := \{x \in \operatorname{dom}(A) : Ax \in \operatorname{dom}(A^{n-1})\}.$

In our situation, we already established in 11.3 for $L = \Delta$, that dom $(\Delta^2) = \Gamma$. So in a similar fashion, inductively, we get by elliptic regularity that

dom
$$(L^n) = \{ u \in W^{2n,2}(\Omega) \cap W^{1,2}_0(\Omega) : L^i u \in W^{1,2}_0(\Omega) \text{ for } i = 1, \dots, n-1 \}$$

So

$$\operatorname{dom}(L^{\infty}) \subset (\bigcap_{n=1}^{n} W^{2n,2}(\Omega)) \cap W_{0}^{1,2}(\Omega) \subset \{ u \in C^{\infty}(\Omega) : u|_{\partial\Omega} = 0 \},\$$

so all the solutions $x : [0, \infty) \to L^2(\mathbb{R}^n) : t \mapsto S(t)u_0$ is mapping into $C^{\infty}(\Omega)$ and vanishes on the boundary for t > 0 and $u_0 \in L^2(\mathbb{R}^n)$.