12.1. Regularity on \mathbb{R}^{n}. Let $1<p<\infty$. Prove that for $f \in L^{p}\left(\mathbb{R}^{n}\right), u \in L^{p}\left(\mathbb{R}^{n}\right)$ with

$$
\int_{\mathbb{R}^{n}} u \Delta \varphi=\int_{\mathbb{R}^{n}} f \varphi
$$

for all $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$. Then $u \in W^{2, p}\left(\mathbb{R}^{n}\right)$ and $\Delta u=f$.
Hint: Use Theorem 7 on local regularity with a cubes of radius $\frac{1}{2}$ in a box of radius 1 and translate.
Solution: We directly obtain from (i) that $u \in W_{l o c}^{k+2, p}\left(\mathbb{R}^{n}\right)$ and $\Delta u=f$. Now define $\|x\|_{\infty}:=\max _{i=1, \ldots, n}\left|x_{i}\right|$ and take $K=\bar{B}_{1 / 2}^{\|\cdot\|_{\infty}}(0)$ and $\Omega=B_{1}^{\|\cdot\|_{\infty}}(0)$ in (ii) to get the estimate for $C>0$

$$
\begin{equation*}
\|u\|_{W^{2, p}(K)} \leq C\left(\|\Delta u\|_{L^{p}(\Omega)}+\|u\|_{L^{p}(\Omega)}\right) \tag{1}
\end{equation*}
$$

Now define τ_{α} for $\alpha \in \mathbb{Z}^{n}$ to be the translation by this vector. As all the norms in (1) are translation invariant, we have that

$$
\|u\|_{W^{2, p}\left(\tau_{\alpha} K\right)} \leq C\left(\|f\|_{L^{p}\left(\tau_{\alpha} \Omega\right)}+\|u\|_{L^{p}\left(\tau_{\alpha} \Omega\right)}\right)
$$

for all $\alpha \in \mathbb{Z}^{n}$. (Same constant $\mathrm{C}>0$!) Now the union of $\tau_{\alpha} K$ for $\alpha \in \mathbb{Z}^{n}$ covers every point outside of a set of measure zero exactly once and the union of $\tau_{\alpha} K$ for $\alpha \in \mathbb{Z}^{n}$ covers every point outside of a set of measure zero exactly 2^{n} times. Here the set of measure zero is the countable union of faces of the cubes $\tau_{\alpha} K$. Thus we get the estimate

$$
\begin{aligned}
& \|u\|_{W^{2, p}\left(\mathbb{R}^{n}\right)}=\sum_{\alpha \in \mathbb{Z}^{n}}\|u\|_{W^{2, p}\left(\tau_{\alpha} K\right)} \\
& \quad \leq C \sum_{\alpha \in \mathbb{Z}^{n}}\left(\|f\|_{L^{p}\left(\tau_{\alpha} \Omega\right)}+\|u\|_{L^{p}\left(\tau_{\alpha} \Omega\right)}\right)=2^{n} C\left(\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)}+\|u\|_{L^{p}\left(\mathbb{R}^{n}\right)}\right)<\infty
\end{aligned}
$$

So $u \in W^{2, p}\left(\mathbb{R}^{n}\right)$.
Note: This last estimate could have also been obtained by a combination of Calderòn-Zygmund and Gagliardo-Nirenberg together with an approximation by smooth functions with compact support.
12.2. The heat kernel. Let $K_{t}(x):=\frac{1}{(4 \pi t)^{n / 2}} e^{\frac{-|x|^{2}}{4 t}}$ for $x \in \mathbb{R}^{n}$ and $t>0$.
(a) Prove that $\partial_{t} K_{t}=\Delta K_{t}$, i.e. the kernel of the heat equation is a solution of the heat equation.
(b) Prove that $I:=\int_{\mathbb{R}^{n}} K_{t} \mathrm{~d} x=1$ for $t>0$. Hint: Calculate I^{2} instead, use spherical coordinates and use $\omega_{2 n}=\frac{2 \pi^{n}}{(n-1)!}$.
(c) Prove that $K_{t+s}=K_{t} * K_{s}$ for all $s, t>0$. Hint: Go to the Fourier side.
(d) Prove that $\lim _{t \rightarrow 0}\left\|K_{t} * u-u\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}=0$ for all $1 \leq p \leq \infty$ and for all $u \in C_{0}\left(\mathbb{R}^{n}\right)$. Hint: Start with $p=\infty$.
(e) Conclude that for $1 \leq p<\infty, \lim _{t \rightarrow 0}\left\|K_{t} * u-u\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}=0$ for all $u \in L^{p}\left(\mathbb{R}^{n}\right)$. Hint: Use Banach-Steinhaus. $(2.1 .5)^{1}$
(f) Conclude that $S(t): L^{p}\left(\mathbb{R}^{n}\right) \rightarrow L^{p}\left(\mathbb{R}^{n}\right)$ for $t \geq 0$ given by

$$
S(t) u_{0}:=\left\{\begin{aligned}
K_{t} * u_{0} \text { for } & t>0 \\
u_{0} \text { for } & t=0
\end{aligned}\right.
$$

is a strongly continuous semigroup. (7.1.1) Prove that this is a contracting (7.2.9) and self-adjoint (7.3.10, $p=2$) strongly continuous semigroup.
(g) For $u_{0} \in L^{p}\left(\mathbb{R}^{n}\right)$ prove that $u:(0, \infty) \times \mathbb{R}^{n} \rightarrow \mathbb{R}:(t, x) \mapsto\left(S(t) u_{0}\right)(x)$ is a smooth solution of the heat equation $\partial_{t} u=\Delta u$ with $\lim _{t \rightarrow 0}\left\|u(t, \cdot)-u_{0}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}=0$.
(h) Determine the infinitesimal generator (7.1.9) of S for $1<p<\infty$. Hint: Use Lemma 5.1.9 and Exercise 12.1 to determine the domain.
(i) Prove that the heat equation with initial values in $W^{2, p}\left(\mathbb{R}^{n}\right)$ is a well-posed Cauchy problem. Hint: Use 7.2.2.

Solution:

(a) We simply compute for $i=1, \ldots, n$ and $t>0$,

$$
\begin{aligned}
& \partial_{t} K_{t}=K_{t}\left(-\frac{n}{2 t}+\frac{|x|^{2}}{4 t^{2}}\right), \\
& \partial_{i} K_{t}=-K_{t} \frac{2 x_{i}}{4 t}, \\
& \partial_{i}^{2} K_{t}=K_{t}\left(-\frac{2}{4 t}-\frac{x_{i}^{2}}{4 t^{2}}\right) .
\end{aligned}
$$

Hence, summing over i, we get $\partial_{t} K_{t}=\Delta K_{t}$ for all $t>0$.
(b) Fix $t>0$. Call $I=\sum_{\mathbb{R}^{n}} K_{t}(x) \mathrm{d} x$. We will calculate I^{2} as follows

$$
\begin{aligned}
(4 \pi t)^{n} I^{2} & =\int_{\left(\mathbb{R}^{n}\right)^{2}} e^{-\frac{|x|^{2}}{4 t}} e^{-\frac{|y|^{2}}{4 t}} \mathrm{~d} x \mathrm{~d} y \\
& =\int_{\mathbb{R}^{2 n}} e^{-\frac{|z|^{2}}{4 t}} \mathrm{~d} z \\
& =\omega_{2 n} \int_{0}^{\infty} e^{-\frac{r^{2}}{4 t}} r^{2 n-1} \mathrm{~d} r
\end{aligned}
$$

[^0]Define $I_{n}:=\int_{0}^{\infty} e^{-\frac{r^{2}}{4 t}} r^{2 n-1} \mathrm{~d} r$. We can inductively calculate this integral from $I_{1}=2 t$. Indeed, by integration by part, we get for $n>1$

$$
\begin{aligned}
I_{n} & =2 t(2 n-2) \int_{0}^{\infty} e^{-\frac{r^{2}}{4 t} r^{2 n-3}} \mathrm{~d} r=2 t(2 n-2) I_{n-1}=\ldots \\
& =(2 t)^{n-1} \prod_{i=1}^{n-1}(2 n-2 i) I_{1}=(2 t)^{n} 2^{n-1}(n-1)!
\end{aligned}
$$

Thus

$$
I^{2}=\frac{1}{(4 t \pi)^{n}}(2 t)^{n} 2^{n-1}(n-1)!\omega_{2 n}=1 .
$$

(c) We calculate the Fourier transform of $K_{t} \in \mathcal{S}\left(\mathbb{R}^{n}\right)$. For $t>0$, we get

$$
\begin{aligned}
\mathcal{F}\left(K_{t}\right)(\xi) & =\frac{1}{(4 \pi t)^{n / 2}} \int_{\mathbb{R}^{n}} e^{-i\langle x, \xi\rangle} e^{-\frac{|x|^{2}}{4 t}} \mathrm{~d} x=\frac{1}{(4 \pi t)^{n / 2}} \int_{\mathbb{R}^{n}} e^{-t|\xi|^{2}} e^{-\left|t^{1 / 2} i \xi+\frac{x}{2 \sqrt{t} t}\right|^{2}} \mathrm{~d} x \\
& =e^{-t|\xi|^{2}} \int_{\mathbb{R}^{n}} K_{t}(x) \mathrm{d} x=e^{-t|\xi|^{2}}
\end{aligned}
$$

where the third equality comes from invariance under translation of the Lebesgue measure and the last by the calculations in (b). Thus we get for $s, t>0$ that

$$
\mathcal{F}\left(K_{s+t}\right)=\mathcal{F}\left(K_{s}\right) \mathcal{F}\left(K_{t}\right) .
$$

Therefore, we get under Fourier inverse

$$
K_{s+t}=K_{s} * K_{t}
$$

for all $s, t>0$.
(d) Take $u \in C_{0}\left(\mathbb{R}^{n}\right)$. Fix $\epsilon>0$. Then by absolute continuity, there is $\delta>0$ such that $|u(x-y)-u(x)| \leq \frac{\epsilon}{2}$ for $x \in \mathbb{R}^{n}$ and $y \in B_{\delta}(0)$. Thus we get for $x \in \mathbb{R}^{n}$, that

$$
\begin{aligned}
& K_{t} * u(x)-u(x)=\int_{\mathbb{R}^{n}} K_{t}(y)(u(x-y)-u(x)) \mathrm{d} y \\
& =\int_{B_{\delta}(0)} K_{t}(y)(u(x-y)-u(x)) \mathrm{d} y+\int_{\mathbb{R}^{n} \backslash B_{\delta}(0)} K_{t}(y)(u(x-y)-u(x)) \mathrm{d} y \\
& =I_{1}+I_{2}
\end{aligned}
$$

Now, by choice of $\delta>0$ and $\int_{\mathbb{R}^{n}} K_{t} \mathrm{~d} x=1$, we have $\left|I_{1}\right| \leq \frac{\epsilon}{2}$. Now for I_{2}, we notice that

$$
\int_{\mathbb{R}^{n} \backslash B_{\delta}(0)} K_{t}(y) \mathrm{d} y=\int_{\mathbb{R}^{n} \backslash B_{r}(0)} K_{1}(y) \mathrm{d} y
$$

where $r=\frac{\delta}{\sqrt{t}}$. As $\int_{\mathbb{R}^{n}} K_{1} \mathrm{~d} x=1$, we have that there is $R>0$ such that if $r>R$, then

$$
2\|u\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} \int_{\mathbb{R}^{n} \backslash B_{r}(0)} K_{1}(y) \mathrm{d} y<\frac{\epsilon}{2}
$$

and so by definition, for $0<t<\frac{\delta^{2}}{R^{2}}$, we get $\left|I_{2}\right|<\frac{\epsilon}{2}$. This proves that

$$
\lim _{t \rightarrow 0}\left\|K_{t} * u-u\right\|_{L^{\infty}\left(\mathbb{R}^{n}\right)}=0 .
$$

Now let $R>0$ such that $\operatorname{supp} u \subset B_{R}(0)$, then we have

$$
\begin{aligned}
& \lim _{t \rightarrow 0}\left\|K_{t} * u-u\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \\
& =\lim _{t \rightarrow 0}\left\|K_{t} * u-u\right\|_{L^{p}\left(B_{R}(0)\right)}+\lim _{t \rightarrow 0}\left\|K_{t} * u-u\right\|_{L^{p}\left(\mathbb{R}^{n} \backslash B_{R}(0)\right)} \\
& \leq \mu(\operatorname{supp} f)^{\frac{1}{p}} \lim _{t \rightarrow 0}\left\|K_{t} * u-u\right\|_{L^{\infty}\left(\mathbb{R}^{n}\right)}+\lim _{t \rightarrow 0}\left\|K_{t}\right\|_{L^{1}\left(\mathbb{R}^{n} \backslash B_{R}(0)\right.}\|u\|_{L^{p}\left(\mathbb{R}^{n}\right)}=0
\end{aligned}
$$

where we used Hölder's inequality and Young's inequality.
(e) As $C_{c}\left(\mathbb{R}^{n}\right)$ is dense in every $L^{p}\left(\mathbb{R}^{n}\right)$ for $1 \leq p \leq \infty$ and as for $t>0$

$$
\|S(t) u\|_{L^{p}} \leq\left\|K_{t}\right\|_{L^{1}}\|u\|_{L^{p}}
$$

by Young's inequality, we have that

$$
\begin{equation*}
\|S(t)\| \leq 1 \tag{2}
\end{equation*}
$$

we can apply Banach-Steinhaus to conclude that $S(t)$ converges strongly to the identity on $L^{p}\left(\mathbb{R}^{n}\right)$.
(f) By the previous paragraph, S is strongly continuous. That it is a semi-group follows immediately from (c). That it is a contraction group follows by definition from (2). That for $p=2, S(t)$ is self-adjoint, follows from $K_{t}(x)=K_{t}(-x)$ for all $t>0$ and $x \in \mathbb{R}^{n}$, because then

$$
\langle S(t) u, v\rangle_{L^{2}}=\int_{\left(\mathbb{R}^{n}\right)^{2}} u(x) K_{t}(x-y) v(y)=\langle u, S(t) v\rangle_{L^{2}} .
$$

(g) That u is smooth follows from K_{t} being smooth. Also from (a), we get that u is solution of the heat equation and the last statement comes from the strong continuity of S.
(h) An educated guess would be that $A: \operatorname{dom}(A) \rightarrow L^{p}\left(\mathbb{R}^{n}\right)$, the infinitesimal generator of S, is equal to $\Delta: W^{2, p}\left(\mathbb{R}^{n}\right) \rightarrow L^{p}\left(\mathbb{R}^{n}\right)$.

We start by showing that $W^{2, p}\left(\mathbb{R}^{n}\right) \subset \operatorname{dom}(A)$. So fix $u \in W^{2, p}\left(\mathbb{R}^{n}\right), T>0$ and by the same argument as in Analysis I, the function $x:[0, T] \rightarrow L^{p}\left(\mathbb{R}^{n}\right): t \rightarrow \int_{0}^{t}\left(K_{s} * \Delta u\right) \mathrm{d} s$ is continuously differentiable and its derivative \dot{x} is equal $\dot{x}(t)=K_{t} * \Delta u$. In particular, $\dot{x}(0)=\Delta u$ by strong continuity. Let $v \in L^{q}\left(\mathbb{R}^{n}\right)=\left(L^{p}\left(\mathbb{R}^{n}\right)\right)^{*}$ with $\frac{1}{p}+\frac{1}{q}=1$, and so

$$
\left\langle v, \int_{0}^{t} K_{s} * \Delta u \mathrm{~d} s\right\rangle:=\int_{0}^{t}\left\langle v, K_{s} * \Delta u\right\rangle \mathrm{d} s=\lim _{\delta \rightarrow 0^{+}} \int_{\delta}^{t}\left\langle v, K_{s} * \Delta u\right\rangle \mathrm{d} s
$$

where the last inequality follows by dominated convergence. But now we have for $\delta \leq s \leq t$ and $x \in \mathbb{R}^{n}$, that

$$
K_{s} * \Delta u(x)=\Delta K_{s} * u(x)=\left(\partial_{s} K_{s}\right) * u(x)=\partial_{s}\left(K_{s} * u(x)\right)
$$

where we used (a) and usual differentiation rules for convolution products. Here we commit a minor notational abuse in noting the derivative $\dot{\gamma}(s)$ of the path $\gamma:[\delta, t] \rightarrow$ $\mathbb{R}: s \rightarrow\left\langle v, K_{s} * u\right\rangle$ by $\partial_{s}\left\langle v, K_{s} * u\right\rangle$. Thus, we pursue

$$
\begin{aligned}
\left\langle v, \int_{0}^{t} K_{s} * \Delta u \mathrm{~d} s\right\rangle & =\lim _{\delta \rightarrow 0^{+}} \int_{\delta}^{t} \partial_{s}\left\langle v, K_{s} * u\right\rangle \mathrm{d} s \\
& =\lim _{\delta \rightarrow 0^{+}}\left\langle v, K_{t} * u-K_{\delta} * u\right\rangle=\left\langle v, K_{t} * u-u\right\rangle
\end{aligned}
$$

where we use 5.1.9. in the second equality and Hölder inequality together with strong continuity in the last equality. As $v \in L^{q}\left(\mathbb{R}^{n}\right)$ was arbitrary, we have established by Hahn-Banach, that

$$
\int_{0}^{t} K_{s} * \Delta u \mathrm{~d} s=K_{t} * u-u
$$

which immediately tells us by combining all the above that $u \in \operatorname{dom}(A)$ and $A u=\Delta u$.
Now we still have to prove that $\operatorname{dom}(A) \subset W^{2, p}\left(\mathbb{R}^{n}\right)$. So let $u \in \operatorname{dom}(A) \subset L^{p}\left(\mathbb{R}^{n}\right)$. Then fix $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$, so in particular $\varphi \in W^{2, q}\left(\mathbb{R}^{n}\right)$. So by what we just established, we have $\lim _{h \rightarrow 0^{+}} \frac{K_{h} * \varphi-\varphi}{h}=\Delta \varphi$ where the limit is take in $L^{q}\left(\mathbb{R}^{n}\right)$. Therefore, by Hölder and dominated convergence, we have

$$
\langle\varphi, A u\rangle:=\lim _{h \rightarrow 0^{+}}\left\langle\varphi, \frac{K_{h} * u-u}{h}\right\rangle=\lim _{h \rightarrow 0^{+}}\left\langle\frac{K_{h} * \varphi-\varphi}{h}, u\right\rangle=\langle\Delta \varphi, u\rangle
$$

where all the pairings are the usual $L^{p}-L^{q}$ one and the second equality also used the symmetry $K_{h}(x)=K_{h}(-x)$. Therefore, we get that u is a weak solution with $f=A u \in L^{p}\left(\mathbb{R}^{n}\right)$. Therefore, by 12.1 , we have that $u \in W^{2, p}\left(\mathbb{R}^{n}\right)$. This ends the proof of $A=\Delta$.
(i) We know that $W^{2, p}\left(\mathbb{R}^{n}\right)$ is dense in $L^{p}\left(\mathbb{R}^{n}\right)$ and $\Delta: W^{2, p}\left(\mathbb{R}^{n}\right) \rightarrow L^{p}\left(\mathbb{R}^{n}\right)$ is closed by the usual argument of elliptic regularity used in 11.2. (a). So we can apply Phillips theorem, and conclude that it is a well-posed problem.
12.3. The heat equation on a bounded domains. Let $\Omega \subset \mathbb{R}^{n}$ be an open, bounded domain with smooth boundary. Take L to be a divergence form elliptic operator i.e. $L u=\sum_{i, j=1}^{n} \partial_{i}\left(a_{i j} \partial_{j} u\right)$ with $a_{i j}=a_{j i} \in C^{\infty}(\bar{\Omega})$ and there is $\delta>0$ with $\sum_{i, j=1}^{n} a_{i j}(x) \xi_{i} \xi_{j} \geq \delta|\xi|^{2}$ for all $\xi \in \mathbb{R}^{n}$ and $x \in \mathbb{R}^{n}$.
(a) Prove that $L: W^{2,2}(\Omega) \cap W_{0}^{1,2}(\Omega) \subset L^{2}(\Omega) \rightarrow L^{2}(\Omega)$ is the infinitesimal generator of a contraction strongly continuous semigroup S which is also self-adjoint.

Hint: Use Lumer-Phillips Theorem (7.2.11) and the theorem on self-adjoint semigroups (7.3.10) together with exercise 11.2. (c).
(b) S cannot be extended into a strongly continuous group.

Hint: Use the theorem on strongly continuous groups (7.2.4) and the corollary to Hille-Yoshida (7.2.8) together with the fact that L is bijective and $L^{-1}: L^{2}\left(\mathbb{R}^{n}\right) \rightarrow$ $L^{2}\left(\mathbb{R}^{n}\right)$ is compact together with the spectral theory for compact operators (5.2.7) and self-adjoint operators (5.3.16).
(c) Prove that for $u_{0} \in L^{2}\left(\mathbb{R}^{n}\right), S(t) u_{0}$ is smooth and vanishes on the boundary for every $t>0$.

Hint: Use the theorem on strongly continuous analytic semigroups 7.4.2 and example 7.4.5 on analyticity of self-adjoint strongly continuous semigroups.

Solution:

(a) For $u \in W^{2,2}(\Omega) \cap W_{0}^{1,2}(\Omega)$, we have that

$$
\langle u, L u\rangle=-\int_{\Omega} \partial_{i} u a_{i j} \partial_{j} u=-B(u, u) \leq 0 .
$$

and due to Exercise 11.2. (d), we know that for all $\lambda>0$, we have $L-\lambda \mathbb{1}$ is bijective, so in particular has a dense image. Therefore, we have by $7.2 .11(i v) \Longrightarrow(i)$, that A is the infinitesimal generator of a contraction strongly continuous semigroup $S(t): L^{2}(\Omega) \rightarrow L^{2}(\Omega)$ for ≥ 0. Furthermore, L is self-adjoint by 11.2 (c) with

$$
\sup _{0 \neq u \in W^{2,2}(\Omega) \cap W_{0}^{1,2}(\Omega)} \frac{\langle u, L u\rangle}{\|u\|_{L^{2}\left(\mathbb{R}^{n}\right)}} \leq 0<\infty
$$

so that S is also self-adjoint by Theorem 7.3.10.
(b) S can be extended into a strongly continuous groups by 7.2 .4 exactly if $-L$ is also the infinitesimal generator of a strongly continuous semigroup. The fact of being the infinitesimal generator of a strongly continuous semigroup is characterised by Hille-Yoshida (7.2.8). One necessary condition in $(i i)$ is that the spectrum $\sigma(-L)$ is bounded from above. However, $L^{-1}: L^{2}\left(\mathbb{R}^{n}\right) \rightarrow W^{2,2}(\Omega) \cap W_{0}^{1,2}(\Omega) \hookrightarrow L^{2}\left(\mathbb{R}^{n}\right)$ is
compact as the last inclusion in compact by Rellich-Kondrachov and the first operator is bounded. Furthermore, as L is self-adjoint, L^{-1} is self-adjoint as well. By 5.2.16. (v), there is an orthonormal basis of eigenvectors for $L^{2}\left(\mathbb{R}^{n}\right)$. Furthermore, $\lambda=0$ is not an eigenvalue, as L is surjective and so by 5.2 .7 , there are countably many eigenvalues λ_{i} (every $E_{\lambda_{i}}$ has finite dimension whereas $L^{2}\left(\mathbb{R}^{n}\right)$ is infinite dimensional.) and the eigenvalues have to accumulate at zero. Due to this, $\frac{1}{\lambda_{i}}$ are eigenvalues of L. This means that all λ_{i} are negative and so the point spectrum of L is unbounded below, meaning that the spectrum of $-L$ is unbounded from above. Due to our previous observation, this implies that $-L$ is not the infinitesimal generator of a strongly continuous semigroups, and so S cannot be extended to a strongly continuous group.
(c) By 7.4.5, S is an analytical semigroup as every self-adjoint strongly continuous semigroup is. Therefore, $\operatorname{im} S(t) \subset \operatorname{dom}(A)$ for all $t>0$, furthermore we even have $\operatorname{im} S(t) \subset \operatorname{dom}\left(A^{\infty}\right)$. This is the set defined in 7.1.14. as $\operatorname{dom}\left(A^{\infty}\right)=\bigcap_{n=1}^{\infty} \operatorname{dom}\left(A^{n}\right)$ with $\operatorname{dom}\left(A^{n}\right):=\left\{x \in \operatorname{dom}(A): A x \in \operatorname{dom}\left(A^{n-1}\right)\right\}$.

In our situation, we already established in 11.3 for $L=\Delta$, that $\operatorname{dom}\left(\Delta^{2}\right)=\Gamma$. So in a similar fashion, inductively, we get by elliptic regularity that

$$
\operatorname{dom}\left(L^{n}\right)=\left\{u \in W^{2 n, 2}(\Omega) \cap W_{0}^{1,2}(\Omega): L^{i} u \in W_{0}^{1,2}(\Omega) \text { for } i=1, \ldots, n-1\right\}
$$

So

$$
\operatorname{dom}\left(L^{\infty}\right) \subset\left(\bigcap_{n=1}^{n} W^{2 n, 2}(\Omega)\right) \cap W_{0}^{1,2}(\Omega) \subset\left\{u \in C^{\infty}(\Omega):\left.u\right|_{\partial \Omega}=0\right\}
$$

so all the solutions $x:[0, \infty) \rightarrow L^{2}\left(\mathbb{R}^{n}\right): t \mapsto S(t) u_{0}$ is mapping into $C^{\infty}(\Omega)$ and vanishes on the boundary for $t>0$ and $u_{0} \in L^{2}\left(\mathbb{R}^{n}\right)$.

[^0]: ${ }^{1}$ All such references in this exercise sheet are to the FA I script.

